MATH 556 - Assignment 4 Solutions

1 By properties of the Gamma distribution, we can write

$$
V_{n}=\frac{(n-1) s_{n}^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2} \equiv \operatorname{Gamma}\left(\frac{n-1}{2}, \frac{1}{2}\right) \Longrightarrow V_{n} \stackrel{d}{=} \sum_{i=1}^{n-1} X_{i}
$$

where $X_{i} \sim \chi_{1}^{2} \equiv \operatorname{Gamma}(1 / 2,1 / 2)$, and the symbol $\stackrel{d}{=}$ indicates equality in distribution (that is, the left hand side and the right hand side have the same distribution). Using the Gamma expectation and variance results

$$
\mathrm{E}_{f_{X_{i}}}\left[X_{i}\right]=\frac{1 / 2}{1 / 2}=1=\mu_{X} \quad \operatorname{Var}_{f_{X_{i}}}\left[X_{i}\right]=\frac{1 / 2}{(1 / 2)^{2}}=2=\sigma_{X}^{2}
$$

say. Hence, by the Central Limit Theorem,

$$
\frac{V_{n}-(n-1) \mu_{X}}{\sqrt{(n-1) \sigma_{X}^{2}}}=\frac{V_{n}-(n-1)}{\sqrt{2(n-1)}} \xrightarrow{d} Z \sim N(0,1)
$$

Hence, substituting in the definition for V_{n},

$$
\frac{\frac{(n-1) s_{n}^{2}}{\sigma^{2}}-(n-1)}{\sqrt{2(n-1)}}=\frac{\sqrt{n-1}\left(s_{n}^{2}-\sigma^{2}\right)}{\sigma^{2} \sqrt{2}} \xrightarrow{d} Z \sim N(0,1)
$$

and finally, by a location/scale transformation to $Z_{n}=\sigma^{2}+\frac{\sigma^{2} \sqrt{2}}{\sqrt{n-1}} Z$, we have

$$
s_{n}^{2} \sim A N\left(\sigma^{2}, \frac{2 \sigma^{4}}{n-1}\right)
$$

Result used: C.

2 Using the Central Limit Theorem, as

$$
\mathrm{E}_{f_{X_{i}}}\left[X_{i}\right]=\lambda \quad \operatorname{Var}_{f_{X_{i}}}\left[X_{i}\right]=\lambda
$$

we may deduce directly that

$$
\sqrt{n}\left(T_{n}-\lambda\right) \xrightarrow{d} Z \sim N(0, \lambda)
$$

Now if $g(x)=e^{-x}$, then $\dot{g}(x)=-e^{-x}$, and by the Delta Method

$$
\sqrt{n}\left(Y_{n}-e^{-\lambda}\right) \xrightarrow{d} Z \sim N\left(0, \lambda e^{-2 \lambda}\right)
$$

and hence, if n is large.

$$
Y_{n} \sim A N\left(e^{-\lambda}, \lambda e^{-2 \lambda} / n\right)
$$

Thus $\mu_{n}=e^{-\lambda}$ and $\sigma_{n}^{2}=\lambda e^{-2 \lambda} / n$.
Results used: C and D.

3 (i) Using a similar argument to the one covered in lectures relating to order statistics, $Y_{n}(x)$ takes values on the set $\{0,1, \ldots, n\}$, and as the X_{i} are independent draws from F_{X}, so we can write

$$
Y_{n}(x) \stackrel{d}{=} \sum_{i=1}^{n} I_{(-\infty, x]}\left(X_{i}\right)
$$

where the $I_{(-\infty, x]}\left(X_{1}\right), \ldots, I_{(-\infty, x]}\left(X_{n}\right)$ are indicator random variables with

$$
\operatorname{Pr}\left[I_{(-\infty, x]}\left(X_{i}\right)=1\right]=\operatorname{Pr}\left[X_{i} \leq x\right]=F_{X}(x) \quad \operatorname{Pr}\left[I_{(-\infty, x]}\left(X_{i}\right)=0\right]=\operatorname{Pr}\left[X_{i}>x\right]=1-F_{X}(x)
$$

Hence, we can deduce that $Y_{n}(x)$ is the sum of independent and identically distributed Bernoulli $\left(F_{X}(x)\right)$ random variables, so that

$$
Y_{n}(x) \sim \operatorname{Binomial}\left(n, F_{X}(x)\right)
$$

and

$$
E_{f_{Y_{n}(x)}}\left[Y_{n}(x)\right]=n F_{X}(x) \quad \operatorname{Var}_{f_{Y_{n}(x)}}\left[Y_{n}(x)\right]=n F_{X}(x)\left(1-F_{X}(x)\right)
$$

3 Marks
(ii) By the Weak Law of Large Numbers, we may deduce that

$$
T_{n} \xrightarrow{p} F_{X}(x)
$$

2 Marks

Result used: B.

4 If the relevant expectation and variance are finite (these are the regularity conditions), by the Weak Law of Large Numbers, we may deduce that the statistic

$$
L_{n}(\theta, \phi)=\frac{1}{n} \sum_{i=1}^{n} \log \left\{\frac{f_{X}\left(X_{i} ; \theta\right)}{f_{X}\left(X_{i} ; \phi\right)}\right\} \xrightarrow{p} E_{f_{X \mid \theta}}\left[\log \left\{\frac{f_{X}(X ; \theta)}{f_{X}(X ; \phi)}\right\}\right]
$$

But from first principles

$$
E_{f_{X \mid \theta}}\left[\log \left\{\frac{f_{X}(x ; \theta)}{f_{X}(x ; \phi)}\right\}\right]=\int \log \left\{\frac{f_{X}(x ; \theta)}{f_{X}(x ; \phi)}\right\} f_{X}(x ; \theta) d x=K(\theta, \phi)
$$

where $K(\theta, \phi)$ is the Kullback-Leibler divergence between the densities with different parameter values θ and ϕ.
Note that by properties of the KL divergence,

$$
L_{n}(\theta, \phi) \xrightarrow{p} 0
$$

if $\theta=\phi$ or if the densities at θ and ϕ are identical everywhere; in all other cases

$$
L_{n}(\theta, \phi) \xrightarrow{p} \Delta>0
$$

say.

Result used: B.

