MATH 556 - Assignment 2
 Solutions

1.

(i) As

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)
$$

we have

$$
\begin{aligned}
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) & =\frac{1}{\sqrt{16 \pi^{2}}} \exp \left\{-\frac{1}{8}\left[4 x_{1}^{2}+\left(x_{2}-x_{1}\right)^{2}\right]\right\}=\frac{1}{\sqrt{16 \pi^{2}}} \exp \left\{-\frac{1}{8}\left[5 x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2}\right]\right\} \\
& =\frac{1}{\sqrt{16 \pi^{2}}} \exp \left\{-\frac{1}{2}{\underset{\sim}{x}}^{\top} P \underset{\sim}{x}\right\}
\end{aligned}
$$

where

$$
P=\frac{1}{4}\left[\begin{array}{rr}
5 & -1 \\
-1 & 1
\end{array}\right]
$$

Thus if we let $\underset{\sim}{\mu}=[0,0]^{\top}$, and

$$
\Sigma=P^{-1}=\left[\begin{array}{ll}
1 & 1 \\
1 & 5
\end{array}\right]
$$

by comparison with the Multivariate Distributions handout, we see that $\underset{\sim}{X} \sim \operatorname{Normal}(\underset{\sim}{\mu}, \Sigma)$ in $k=2$ dimensions. Note that $|\Sigma|=4$, so the lead term

$$
\frac{1}{\sqrt{16 \pi^{2}}}=\left(\frac{1}{2 \pi}\right)^{k / 2} \frac{1}{|\Sigma|^{1 / 2}}
$$

is correctly matched.
4 MARKS
(ii) To get the marginal distribution, we complete the square in x_{1} in the exponent of the integrand:

$$
\begin{aligned}
f_{X_{2}}\left(x_{2}\right)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} & =\int_{-\infty}^{\infty} \frac{1}{\sqrt{16 \pi^{2}}} \exp \left\{-\frac{1}{8}\left[4 x_{1}^{2}+\left(x_{2}-x_{1}\right)^{2}\right]\right\} d x_{1} \\
& =\frac{1}{\sqrt{16 \pi^{2}}} \int_{-\infty}^{\infty} \exp \left\{-\frac{1}{8}\left[5\left(x_{1}-\frac{x_{2}}{5}\right)^{2}+\frac{4}{5} x_{2}^{2}\right]\right\} d x_{1} \\
& =\frac{1}{\sqrt{16 \pi^{2}}} \exp \left\{-\frac{1}{8} \frac{4}{5} x_{2}^{2}\right\} \int_{-\infty}^{\infty} \exp \left\{-\frac{5}{8}\left(x_{1}-\frac{x_{2}}{5}\right)^{2}\right\} d x_{1} \\
& =\frac{1}{\sqrt{16 \pi^{2}}} \exp \left\{-\frac{1}{10} x_{2}^{2}\right\} \times \sqrt{2 \pi(4 / 5)} \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}} x_{2}^{2}\right\}
\end{aligned}
$$

where $\sigma^{2}=5$. Hence, $X_{2} \sim N\left(0, \sigma^{2}\right)$. In this proof, we have used the completing the square formula

$$
A(x-a)^{2}+B(x-b)^{2}=(A+B)\left(x-\frac{A a+B b}{A+B}\right)^{2}+\frac{A B}{A+B}(a-b)^{2}
$$

and the fact that the integral in line 3 has an integrand proportional to the $\operatorname{Normal}\left(x_{2} / 5,4 / 5\right)$ density.
2. We seek first the conditional distribution of T_{1} and T_{2}, given that $R=\sqrt{T_{1}^{2}+T_{2}^{2}} \leq 1$. The restriction

$$
\sqrt{T_{1}^{2}+T_{2}^{2}} \leq 1
$$

corresponds to (T_{1}, T_{2}) lying within the unit circle centered at the origin. That is, conditional on $R \leq 1$, $\left(T_{1}, T_{2}\right) \in \mathcal{D}$ (the unit disc), we must have that the joint pdf of $\left(T_{1}, T_{2}\right)$ is proportional to the joint pdf on $(-1,1) \times(-1,1)$, so that conditional on $R \leq 1, f_{T_{1}, T_{2}}\left(t_{1}, t_{2}\right) \propto 1$ for $\left(t_{1}, t_{2}\right) \in \mathcal{D}$. By elementary area calculation, it follows that under the restriction,

$$
f_{T_{1}, T_{2}}\left(t_{1}, t_{2}\right)=\frac{1}{\pi} \quad\left(t_{1}, t_{2}\right) \in \mathcal{D}
$$

To parameterize points on \mathcal{D}, we consider the transformation from $\left(T_{1}, T_{2}\right)$ to (R, S) where $S=$ $\arctan (Y / X) ; S$ is a random variable with range $(-\pi, \pi)$, and we have

$$
T_{1}=R \cos (S) \quad T_{2}=R \sin (S)
$$

Thus we have by the multivariate transformation method

$$
f_{R, S}(r, s)=f_{T_{1}, T_{2}}(r \cos (s), r \sin (s))|J(r, s)| \quad 0<r<1,-\pi<s<\pi
$$

The Jacobian $|J(r, s)|$ is

$$
\begin{aligned}
& \left|\left|\left[\begin{array}{cc}
\frac{\partial t_{1}}{\partial r} & \frac{\partial t_{1}}{\partial s} \\
\frac{\partial t_{2}}{\partial r} & \frac{\partial t_{2}}{\partial s}
\end{array}\right]\right|=\left|\left[\begin{array}{cc}
\cos (s) & -r \cos (s) \\
\sin (s) & r \cos (s)
\end{array}\right]\right|=r\right. \\
& f_{R, S}(r, s)=\frac{r}{\pi}=(2 r) \times \frac{1}{2 \pi}=f_{R}(r) f_{S}(s) \quad 0<r<1,-\pi<s<\pi
\end{aligned}
$$

Thus, in fact, R and S are independent. Now consider X and Y. We have that

$$
X=\frac{T_{1}}{R} \sqrt{-2 \log R^{2}}=\cos (S) \sqrt{-2 \log R^{2}} \quad Y=\frac{T_{2}}{R} \sqrt{-2 \log R^{2}}=\sin (S) \sqrt{-2 \log R^{2}}
$$

Note that this is a 1-1 transformation for $0<R<1,-\pi<S<\pi$. Inverting this transformation is straightforward; we have

$$
R=\exp \left\{-\left(X^{2}+Y^{2}\right) / 4\right\} \quad S=\arctan (Y / X)
$$

Thus we have by the multivariate transformation method

$$
f_{X, Y}(x, y)=f_{R, S}\left(\exp \left\{-\left(x^{2}+y^{2}\right) / 4\right\}, \arctan (y / x)\right)|J(x, y)| \quad(x, y) \in \mathbb{R}^{2}
$$

The Jacobian $|J(x, y)|$ is

$$
\left|\left[\begin{array}{ll}
\frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\
\frac{\partial s}{\partial x} & \frac{\partial s}{\partial y}
\end{array}\right]\right|=\left|\left[\begin{array}{cc}
-x \exp \left\{-\left(x^{2}+y^{2}\right) / 4\right\} / 2 & -y \exp \left\{-\left(x^{2}+y^{2}\right) / 4\right\} / 2 \\
-y /\left(x^{2}+y^{2}\right) & x /\left(x^{2}+y^{2}\right)
\end{array}\right]\right|=\exp \left\{-\left(x^{2}+y^{2}\right) / 4\right\} / 2
$$

and hence

$$
f_{X, Y}(x, y)=\frac{\exp \left\{-\left(x^{2}+y^{2}\right) / 4\right\}}{\pi} \exp \left\{-\left(x^{2}+y^{2}\right) / 4\right\} / 2=\frac{1}{2 \pi} \exp \left\{-\frac{1}{2}\left(x^{2}+y^{2}\right)\right\} \quad(x, y) \in \mathbb{R}^{2}
$$

from which we see that X and Y are independent, and distributed as $\operatorname{Normal}(0,1)$ variables.
3. Note that, for $r=2,3, \ldots$, using the binomial expansion

$$
m_{r}^{\prime}=E_{f_{X}}\left[\left(X-m_{1}\right)^{r}\right]=\sum_{j=0}^{r}\binom{r}{j}(-1)^{r-j} E_{f_{X}}\left[X^{j}\right] m_{1}^{r-j}=\sum_{j=0}^{r}\binom{r}{j}(-1)^{r-j} m_{j} m_{1}^{r-j}
$$

so that

$$
\begin{aligned}
& m_{2}^{\prime}=m_{2}-m_{1}^{2} \\
& m_{3}^{\prime}=m_{3}-3 m_{1} m_{2}+2 m_{1}^{3} \\
& m_{4}^{\prime}=m_{4}-4 m_{1} m_{3}+6 m_{1}^{2} m_{2}-3 m_{1}^{4}
\end{aligned}
$$

From first principles, for a Poisson random variable

$$
E_{f_{X}}[X]=\sum_{x=0}^{\infty} x f_{X}(x)=\sum_{x=1}^{\infty} x \frac{e^{-\lambda} \lambda^{x}}{x!}=\sum_{x=1}^{\infty} \frac{e^{-\lambda} \lambda^{x}}{(x-1)!}=\lambda e^{-\lambda} \sum_{x=1}^{\infty} \frac{\lambda^{(x-1)}}{(x-1)!}=\lambda e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^{x}}{x!}=\lambda e^{-\lambda} e^{\lambda}=\lambda
$$

Now, by the linearity of expectations
$E_{f_{X}}\left[X^{2}\right]=E_{f_{X}}\left[X^{2}-X+X\right]=E_{f_{X}}[X(X-1)+X]=E_{f_{X}}[X(X-1)]+E_{f_{X}}[X]=E_{f_{X}}[X(X-1)]+\lambda$ and

$$
E_{f_{X}}[X(X-1)]=\sum_{x=2}^{\infty} x(x-1) \frac{e^{-\lambda} \lambda^{x}}{x!}=\sum_{x=2}^{\infty} \frac{e^{-\lambda} \lambda^{x}}{(x-2)!}=\lambda^{2} e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^{x}}{x!}=\lambda^{2}
$$

so that

$$
E_{f_{X}}\left[X^{2}\right]=\lambda^{2}+\lambda .
$$

Similarly,

$$
E_{f_{X}}\left[X^{3}\right]=E_{f_{X}}[X(X-1)(X-2)]+3 E_{f_{X}}\left[X^{2}\right]-2 E_{f_{X}}[X]=E_{f_{X}}[X(X-1)(X-2)]+3 \lambda^{2}+3 \lambda-2 \lambda
$$

Using similar arguments to above, we have $E_{f_{X}}[X(X-1)(X-2)]=\lambda^{3}$, so

$$
E_{f_{X}}\left[X^{3}\right]=\lambda^{3}+3 \lambda^{2}+\lambda
$$

Finally,

$$
\begin{aligned}
E_{f_{X}}\left[X^{4}\right] & =E_{f_{X}}[X(X-1)(X-2)(X-3)]+6 E_{f_{X}}\left[X^{3}\right]-11 E_{f_{X}}\left[X^{2}\right]+6 E_{f_{X}}[X] \\
& =E_{f_{X}}[X(X-1)(X-2)(X-3)]+6\left(\lambda^{3}+3 \lambda^{2}+\lambda\right)-11\left(\lambda^{2}+\lambda\right)+6 \lambda \\
& =\lambda^{4}+6 \lambda^{3}+7 \lambda^{2}+\lambda
\end{aligned}
$$

Bringing all these results together, we find that

$$
m_{2}^{\prime}=\lambda \quad m_{3}^{\prime}=\lambda \quad m_{4}^{\prime}=3 \lambda^{2}+\lambda
$$

and hence

$$
\operatorname{skw}_{f_{X}}[X]=\frac{m_{3}^{\prime}}{\left\{m_{2}^{\prime}\right\}^{3 / 2}}=\lambda^{-1 / 2} \quad \operatorname{kur}_{f_{X}}[X]=\frac{m_{4}^{\prime}}{\left\{m_{2}^{\prime}\right\}^{2}}=\frac{3 \lambda^{2}+\lambda}{\lambda^{2}}=3+\frac{1}{\lambda}
$$

Note: Calculation using generating functions (mgf, fmgf, cgf) also possible.

