MATH 556-Assignment 1 Solutions

1. We have, for $x=1,2, \ldots$

$$
F_{X}(x)=\sum_{t=1}^{x} f_{X}(t)=\sum_{t=1}^{x} \frac{k}{t(t+1)}
$$

but

$$
\frac{1}{t(t+1)}=\frac{1}{t}-\frac{1}{t+1}
$$

so, in fact

$$
F_{X}(x)=k \sum_{t=1}^{x}\left[\frac{1}{t}-\frac{1}{t+1}\right]=k-\frac{k}{x+1}=\frac{k x}{x+1}
$$

as the sum telescopes. Noting that we must have $F_{X}(x) \longrightarrow 1$ as $x \longrightarrow \infty$, it follows that $k=1$. Denoting by $\lfloor x\rfloor$ the largest integer not greater than x, we have that

$$
F_{X}(x)=\frac{\lfloor x\rfloor}{\lfloor x\rfloor+1} \quad x \geq 0
$$

and zero otherwise. See the sketches below:

2. We note that for $x=1,2, \ldots$,

$$
h_{X}(x)=\frac{f_{X}(x)}{1-F_{X}(x-1)}=\frac{\operatorname{Pr}[X=x]}{1-\operatorname{Pr}[X \leq x-1]}=\frac{\operatorname{Pr}[X=x]}{\operatorname{Pr}[X \geq x]} .
$$

From the definition of conditional probability, we can identify that in this discrete setting

$$
h_{X}(x)=\operatorname{Pr}[X=x \mid X \geq x]
$$

as $(X=x) \cap(X \geq x) \equiv(X=x)$. Clearly, as h_{X} is a conditional probability, we must have

$$
0 \leq h_{X}(x) \leq 1
$$

To find an f_{X} with a constant hazard, consider in turn $x=1,2, \ldots$ For $x=1$,

$$
h_{X}(1)=\frac{\operatorname{Pr}[X=1]}{\operatorname{Pr}[X \geq 1]}=\operatorname{Pr}[X=1]=\theta
$$

say, for some θ with $0 \leq \theta \leq 1$. For $x=2$,

$$
h_{X}(2)=\frac{\operatorname{Pr}[X=2]}{1-\operatorname{Pr}[X \leq 1]}=\frac{\operatorname{Pr}[X=2]}{1-\theta} .
$$

But we require that $h_{X}(2)=h_{X}(1)=\theta$, so therefore

$$
\operatorname{Pr}[X=2]=(1-\theta) \theta .
$$

By using this argument recursively, we see after some algebra that

$$
f_{X}(x)=(1-\theta)^{x-1} \theta \quad x=1,2, \ldots
$$

and zero otherwise.
3. The plot below, F_{X} for two values of θ are shown.

(i) By definition

$$
\operatorname{Pr}[X=-1]=\operatorname{Pr}[X \leq x]-\operatorname{Pr}[X<x]
$$

so that

$$
\operatorname{Pr}[X=-1]=F_{X}(-1)-\lim _{x \rightarrow-1^{-}} F_{X}(x)=(1-\theta)-\lim _{x \rightarrow-1^{-}} 0=1-\theta
$$

where $x \rightarrow-1^{-}$indicates that we take the limit as x tends to -1 from below.
(ii) As F_{X} is continuous at $x=0$, we have $\operatorname{Pr}[X=0]=0$.
(iii) By the probability axioms

$$
\operatorname{Pr}[X \geq 1]=1-P[X<1]=1-(1-\theta+\theta \times(1 / 2))=\theta / 2 .
$$

4. We merely need to check that $F(y)$ has the properties of a cdf. Recall that the function $\sin (x)$ is a monotone increasing function for $0<x<\pi / 2$, with

$$
\sin (0)=0 \quad \sin (\pi / 2)=1 .
$$

Now, by definition

$$
\operatorname{Pr}[\sin (X) \leq y]=\int_{A_{y}} f_{X}(x) d x
$$

where $A_{y} \equiv\{x: \sin (x) \leq y\}$. But

$$
\sin (x) \leq y \quad \Longleftrightarrow \quad x \leq \arcsin (y)
$$

so

$$
\operatorname{Pr}[\sin (X) \leq y]=\operatorname{Pr}[X \leq \arcsin (y)]=\int_{0}^{\arcsin (y)} f_{X}(x) d x
$$

and hence

$$
F(y)=\frac{2}{\pi} \arcsin (y) .
$$

From here it is easy to verify that

- $F(0)=0, F(1)=1$
- F is non-decreasing
- F is continuous

By elementary calculus, the corresponding pdf is

$$
f(y)=\frac{d}{d t}\left\{\frac{2}{\pi} \arcsin (t)\right\}_{t=y}=\frac{2}{\pi} \frac{1}{\sqrt{1-y^{2}}} \quad 0<y<1
$$

and zero otherwise.

