MATH 556 - ASSIGNMENT 4

To be handed in not later than 5pm, 29th November 2007.

Please hand in during lectures, to Burnside 1235, or to the Mathematics Office Burnside 1005
In the following questions, use the key stochastic convergence concepts for a sequence of random variables $\left\{X_{n}: n \geq 1\right\}=\left\{X_{1}, X_{2}, \ldots\right\}$ with corresponding distribution functions $\left\{F_{X_{n}}, n \geq 1\right\}$.
A. Convergence in Distribution : Suppose that there exists a cdf, F_{X}, such that for all x at which F_{X} is continuous,

$$
\lim _{n \longrightarrow \infty} F_{X_{n}}(x)=F_{X}(x) .
$$

Then $\left\{X_{n}\right\}$ converges in distribution to random variable X with $\operatorname{cdf} F_{X}, X_{n} \xrightarrow{d} X$, and F_{X} is the limiting distribution. An equivalent result holds for the convergence of mgfs.
B. Convergence in Probability : $\left\{X_{n}\right\}$ converges in probability to random variable $X, X_{n} \xrightarrow{p} X$, if, for all $\epsilon>0$,

$$
\lim _{n \longrightarrow \infty} \operatorname{Pr}\left[\left|X_{n}-X\right|<\epsilon\right]=1 \quad \text { or } \quad \lim _{n \longrightarrow \infty} \operatorname{Pr}\left[\left|X_{n}-X\right| \geq \epsilon\right]=0
$$

In particular, if $\left\{X_{n}\right\}$ are an i.i.d. sequence with finite expectation μ and variance σ^{2}, then the Weak Law of Large Numbers says that

$$
\bar{X}_{n} \xrightarrow{p} \mu \quad \text { as } \quad n \longrightarrow \infty .
$$

C. Central Limit Theorem : Suppose X_{1}, \ldots, X_{n} are i.i.d. random variables with finite expectation μ and variance σ^{2}. Let the random variable Z_{n} be defined by

$$
Z_{n}=\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sqrt{n \sigma^{2}}}=\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sigma}
$$

where \bar{X}_{n} is the sample mean random variable derived from X_{1}, \ldots, X_{n}. Then

$$
Z_{n} \xrightarrow{d} Z \sim N(0,1) \quad \text { as } \quad n \longrightarrow \infty .
$$

We may deduce the asymptotic Normal distribution of \bar{X}_{n} and write, for large finite n that

$$
\bar{X}_{n} \sim A N\left(\mu, \sigma^{2} / n\right)
$$

D. The Delta Method : Suppose that $\sqrt{n}\left(X_{n}-c\right) \xrightarrow{d} X$ as $n \longrightarrow \infty$ for some constant c, and let $g(x)$ be a real-valued function such that $\dot{g}(c) \neq 0$, where $\dot{g}(x)$ is the first derivative of $g(x)$. Then

$$
\sqrt{n}\left(g\left(X_{n}\right)-g(c)\right) \xrightarrow{d} \dot{g}(c) X \quad \text { as } \quad n \longrightarrow \infty .
$$

In particular, if $X \sim N\left(0, \sigma^{2}\right)$, then

$$
\sqrt{n}\left(g\left(X_{n}\right)-g(c)\right) \xrightarrow{d} N\left(0,\{\dot{g}(c)\}^{2} \sigma^{2}\right) \quad \text { as } \quad n \longrightarrow \infty .
$$

so that, for large finite n

$$
g\left(X_{n}\right) \sim A N\left(g(c),\{\dot{g}(c)\}^{2} \sigma^{2} / n\right) .
$$

Please Turn Over for questions 1,2,3,4.

In each of the following questions, state which of the results or definitions A, B, C or D is used to derive the answers.

1. Let s_{n}^{2} denote the sample variance derived from a random sample of size n from a $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ distribution. Show that

$$
\frac{\sqrt{n-1}\left(s_{n}^{2}-\sigma^{2}\right)}{\sigma^{2} \sqrt{2}} \xrightarrow{d} Z \sim N(0,1) \quad \text { so that } \quad s_{n}^{2} \sim A N\left(\sigma^{2}, \frac{2 \sigma^{4}}{n-1}\right)
$$

where $A N$ denotes an asymptotic normal approximation to the distribution of the random variable.
2. Suppose that X_{1}, \ldots, X_{n} are a random sample from a $\operatorname{Poisson}(\lambda)$ distribution. Suppose that $T_{n}=\bar{X}_{n}$ is the corresponding sample mean random variable, and let $Y_{n}=e^{-T_{n}}$.

Show that, for large n, Y_{n} is approximately Normally distributed with parameters μ_{n} and σ_{n}^{2} to be identified.

5 Marks

3. Suppose that random variables $X_{1}, X_{2}, \ldots, X_{n}$ are a random sample from a probability distribution described by cdf F_{X}.

Let $Y_{n}(x)$ be the discrete random variable defined as the number (out of n) of the X s that are no greater than x, for fixed $x \in \mathbb{R}$.
(i) Find the probability distribution of $Y_{n}(x)$, and state the expectation and variance of $Y_{n}(x)$.

Hint: consider the events " $X_{i} \leq x$ " for $i=1, \ldots, n$, and how they define $Y_{n}(x)$.
3 Marks
(ii) State, in precise mathematical terms, the behaviour of the random variable $T_{n}(x)$,

$$
T_{n}(x)=\frac{Y_{n}(x)}{n}
$$

in the limit as $n \longrightarrow \infty$.
2 Marks
4. Suppose that random variables X_{1}, \ldots, X_{n} are a random sample from a probability distribution described by pdf $f_{X}(x \mid \theta)$ with parameter θ. Let ϕ be another value in the parameter space Θ, and let

$$
L_{n}(\theta, \phi)=\sqrt{n} \sum_{i=1}^{n} \log \left\{\frac{f_{X}\left(X_{i} ; \theta\right)}{f_{X}\left(X_{i} ; \phi\right)}\right\}
$$

be a statistic derived from X_{1}, \ldots, X_{n}.
Show that $L_{n}(\theta, \phi)$ converges in probability to some constant to be identified, under regularity conditions to be stated.

