MATH 556 - ASSIGNMENT 2

To be handed in not later than 5pm, 11th October 2007.

Please hand in during lectures, to Burnside 1235, or to the Mathematics Office Burnside 1005

1. Suppose that X_{1} and X_{2} are continuous random variables, with joint pdf specified as

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)
$$

where, for $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$,

$$
\begin{aligned}
f_{X_{1}}\left(x_{1}\right) & =\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2} x_{1}^{2}\right\} \\
f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) & =\frac{1}{\sqrt{8 \pi}} \exp \left\{-\frac{1}{8}\left(x_{2}-x_{1}\right)^{2}\right\}
\end{aligned}
$$

(i) Show that the joint distribution of $\left(X_{1}, X_{2}\right)$ is Multivariate Normal with parameters to be identified.

$$
4 \text { MARKS }
$$

(ii) Find the marginal distribution of X_{2}.

4 Marks
2. Suppose that T_{1} and T_{2} are independent $\operatorname{Uniform}(-1,1)$ random variables with pdfs that are constant on the interval $(-1,1)$. Let

$$
R=\sqrt{T_{1}^{2}+T_{2}^{2}}
$$

Show that, conditional on $R \leq 1$, the random variables

$$
X=\frac{T_{1}}{R} \sqrt{-2 \log R^{2}} \quad Y=\frac{T_{2}}{R} \sqrt{-2 \log R^{2}}
$$

are independent, and identify their marginal distributions.
3. The skewness and kurtosis of a probability distribution is defined in terms of the first four central moments of the distribution: specifically,

$$
\begin{aligned}
& \text { Skewness : } \operatorname{skw}_{f_{X}}[X]=\frac{m_{3}^{\prime}}{\left\{m_{2}^{\prime}\right\}^{3 / 2}} \\
& \text { Kurtosis }: \operatorname{kur}_{f_{X}}[X]=\frac{m_{4}^{\prime}}{\left\{m_{2}^{\prime}\right\}^{2}}
\end{aligned}
$$

where

$$
m_{r}^{\prime}=E_{f_{X}}\left[\left(X-m_{1}\right)^{r}\right]
$$

is the r th central moment, and $m_{r}=E_{f_{X}}\left[X^{r}\right]$ is the r th moment, for $r=1,2,3, \ldots$.
Find the skewness and kurtosis if $X \sim \operatorname{Poisson}(\lambda)$.

