MATH 556 - ASSIGNMENT 1

To be handed in not later than 5pm, 20th September 2007. Please hand in during lectures, to Burnside 1235, or to the Mathematics Office Burnside 1005

1. Suppose that *X* is a discrete random variable with pmf f_X specified by

$$f_X(x) = \frac{k}{x(x+1)}$$
 $x = 1, 2, 3, \dots$

and zero otherwise. Find k, and plot/sketch f_X and the corresponding cdf, F_X .

5 Marks

2. The *hazard function*, h_X , for a discrete random variable *X* with support $X = \{1, 2, 3, ...\}$ is defined by the formula

$$h_X(x) = \frac{f_X(x)}{1 - F_X(x - 1)} \qquad x \in \mathbb{X}$$

where f_X and F_X are the pmf and cdf for X.

Give an interpretation of h_X as a conditional probability, show that $0 \le h_X(x) \le 1$, and find an f_X such that h_X is a constant for $x \in X$.

5 Marks

3. Suppose that F_X is the distribution function for random variable X, and

$$F_X(x) = \begin{cases} 0 & \text{if } x < -1 \\ 1 - \theta & \text{if } -1 \le x < 0 \\ 1 - \theta + \theta x/2 & \text{if } 0 \le x \le 2 \\ 1 & \text{if } x > 2 \end{cases}$$

for some parameter θ . Find

(i) $\Pr[X = -1]$ (ii) $\Pr[X = 0]$ (iii) $\Pr[X \ge 1]$

5 MARKS

4. Suppose that *X* is a continuous random variable with pdf, f_X , defined by

$$f_X(x) = \frac{2}{\pi}$$
 $0 < x < \pi/2$

and zero otherwise. Prove that the function *F* defined for 0 < y < 1 by

$$F(y) = \Pr[\sin(X) \le y]$$

specifies a cdf for a continuous random variable with support (0, 1). Find the corresponding pdf. 5 MARKS