556: MATHEMATICAL STATISTICS I

SAMPLE QUANTILES AND ORDER STATISTICS

For n random variables X_{1}, \ldots, X_{n}, the order statistics, Y_{1}, \ldots, Y_{n}, are defined by

$$
Y_{i}=X_{(i)}-\text { "the i'th smallest value in } X_{1}, \ldots ., X_{n} "
$$

for $i=1, \ldots, n$. For example

- $Y_{1}=X_{(1)}=\min \left\{X_{1}, \ldots, X_{n}\right\}$,
- $Y_{n}=X_{(n)}=\max \left\{X_{1}, \ldots, X_{n}\right\}$.

For n independent, identically distributed random variables X_{1}, \ldots, X_{n}, with marginal density function f_{X}, the following theorem characterizes the key distributional results.

THEOREM

For random sample X_{1}, \ldots, X_{n} from population with pmf/pdf f_{X} and $\operatorname{cdf} F_{X}$,
(a) $Y_{1}=X_{(1)}$ has cdf

$$
F_{Y_{1}}(y)=1-\left\{1-F_{X}(y)\right\}^{n}
$$

(b) $Y_{n}=X_{(n)}$ has cdf

$$
F_{Y_{n}}(y)=\left\{F_{X}(y)\right\}^{n}
$$

Proof. (a) For the marginal cdf for Y_{1},

$$
\begin{aligned}
F_{Y_{1}}\left(y_{1}\right) & =P\left[Y_{1} \leq y_{1}\right]=1-P\left[Y_{1}>y_{1}\right]=1-P\left[\min \left\{X_{1}, \ldots, X_{n}\right\}>y_{1}\right] \\
& =1-P\left[X_{1}>y_{1}, X_{2}>y_{1}, \ldots, X_{n}>y_{1}\right] \\
& =1-\prod_{i=1}^{n} P\left[X_{i}>y_{1}\right]=1-\prod_{i=1}^{n}\left\{1-F_{X}\left(y_{1}\right)\right\} \\
& =1-\left\{1-F_{X}\left(y_{1}\right)\right\}^{n}
\end{aligned}
$$

(b) For Y_{n},

$$
\begin{aligned}
F_{Y_{n}}\left(y_{n}\right) & =P\left[Y_{n} \leq y_{n}\right]=P\left[\max \left\{X_{1}, \ldots, X_{n}\right\} \leq y_{n}\right]=P\left[X_{1} \leq y_{n}, X_{2} \leq y_{n}, \ldots, X_{n} \leq y_{n}\right] \\
& =\prod_{i=1}^{n} P\left[X_{i} \leq y_{n}\right]=\prod_{i=1}^{n}\left\{F_{X}\left(y_{n}\right)\right\} \\
& =\left\{F_{X}\left(y_{n}\right)\right\}^{n}
\end{aligned}
$$

The pmf/pdf can be computed from the cdf.

THEOREM (MARGINAL PMF/PDF)

For random sample X_{1}, \ldots, X_{n} from population with $\mathrm{pmf} / \mathrm{pdf} f_{X}$ and $c d f F_{X}$,
(a) In the discrete case, suppose that $\mathbb{X} \equiv\left\{x_{1}, x_{2}, \ldots\right\}$, where $x_{1}<x_{2}<\cdots$, and suppose that

$$
f_{X}\left(x_{i}\right)=p_{i} \quad i=1,2, \ldots
$$

Then the marginal cdf of $Y_{j}=X_{(j)}$ is defined by

$$
F_{Y_{j}}\left(x_{i}\right)=\sum_{k=j}^{n}\binom{n}{k} P_{i}^{k}\left(1-P_{i}\right)^{n-k} \quad x_{i} \in \mathbb{X}
$$

with the usual cdf behaviour at other values of x. The marginal pmf of $Y_{j}=X_{(j)}$ is

$$
f_{Y_{j}}(x)=\sum_{k=j}^{n}\binom{n}{k}\left[P_{i}^{k}\left(1-P_{i}\right)^{n-k}-P_{i-1}^{k}\left(1-P_{i-1}\right)^{n-k}\right] \quad x_{i} \in \mathbb{X}
$$

and zero otherwise, where

$$
P_{i}=\sum_{k=1}^{i} p_{i} .
$$

(b) In the continuous case, the marginal cdf of $Y_{j}=X_{(j)}$ is

$$
F_{Y_{j}}(x)=\sum_{k=j}^{n}\binom{n}{k}\left\{F_{X}(x)\right\}^{k}\left\{1-F_{X}(x)\right\}^{n-k}
$$

and the marginal pdf is

$$
f_{Y_{j}}(x)=\frac{n!}{(j-1)!(n-j)!}\left\{F_{X}(x)\right\}^{j-1}\left\{1-F_{X}(x)\right\}^{n-j} f_{X}(x)
$$

THEOREM (JOINT PDF: CONTINUOUS CASE)

For random sample X_{1}, \ldots, X_{n} from population with pdf f_{X}, the joint pdf of order statistics Y_{1}, \ldots, Y_{n}

$$
f_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n}\right)=n!f_{X}\left(y_{1}\right) \ldots f_{X}\left(y_{n}\right) \quad y_{1}<\ldots<y_{n}
$$

NOTE: In general, these distributions are difficult to compute for large n.

