556: Mathematical Statistics I
 Non 1-1 Transformations

Suppose that X is a continuous r.v. with range $\mathbb{X} \equiv(0,2 \pi)$ whose pdf f_{X} is constant

$$
f_{X}(x)=\frac{1}{2 \pi} \quad 0<x<2 \pi
$$

and zero otherwise. This pdf has corresponding continuous cdf

$$
F_{X}(x)=\frac{x}{2 \pi} \quad 0<x<2 \pi
$$

Example 1 Consider transformed r.v. $Y=\sin X$. Then the range of Y, \mathbb{Y} is $[-1,1]$, but the transformation is not 1-1. However, from first principles, we have

$$
F_{Y}(y)=P[Y \leq y]=P[\sin X \leq y]
$$

Now, by inspection of Figure 1, we can easily identify the required set $A_{y}:$ it is the union of two disjoint intervals

$$
A_{y}=\left[0, x_{1}\right] \cup\left[x_{2}, 2 \pi\right]=[0, \arcsin y] \cup[\pi-\arcsin y, 2 \pi]
$$

Figure 1: Computation of A_{y} for $Y=\sin X$

$$
\begin{aligned}
F_{Y}(y) & =P[\sin X \leq y]=P\left[X \leq x_{1}\right]+P\left[X \geq x_{2}\right]=\left\{P\left[X \leq x_{1}\right]\right\}+\left\{1-P\left[X<x_{2}\right]\right\} \\
& =\left\{\frac{1}{2 \pi} \arcsin y\right\}+\left\{1-\frac{1}{2 \pi}(\pi-\arcsin y)\right\}=\frac{1}{2}+\frac{1}{\pi} \arcsin y
\end{aligned}
$$

and hence, by differentiation

$$
f_{Y}(y)=\frac{1}{\pi} \frac{1}{\sqrt{1-y^{2}}} \quad 0 \leq y \leq 1
$$

and zero otherwise.

Example 2 Consider transformed r.v. $Y=\sin ^{2} X$. Then the range of Y, \mathbb{Y}, is $[0,1]$, but the transformation is not 1-1. However, from first principles, we have

$$
F_{Y}(y)=P[Y \leq y]=P[\sin X \leq y]
$$

In Figure 2, we identify the required set A_{y} : it is the union of three disjoint intervals

$$
A_{y}=\left[0, x_{1}\right] \cup\left[x_{2}, x_{3}\right] \cup\left[x_{4}, 2 \pi\right]
$$

where

$$
x_{1}=\arcsin (\sqrt{y}) \quad x_{2}=\pi-\arcsin (\sqrt{y}) \quad x_{3}=\pi+\arcsin (\sqrt{y}) \quad x_{4}=2 \pi-\arcsin (\sqrt{y})
$$

Figure 2: Computation of A_{y} for $Y=\sin ^{2} X$

$$
\begin{aligned}
F_{Y}(y) & =P\left[\sin ^{2} X \leq y\right]=P\left[X \leq x_{1}\right]+P\left[x_{2}<X \leq x_{3}\right]+P\left[x_{4}<X \leq 2 \pi\right] \\
& =F_{X}\left(x_{1}\right)+\left\{F_{X}\left(x_{3}\right)-F_{X}\left(x_{2}\right)\right\}+\left\{1-F_{X}\left(x_{4}\right)\right\} \\
& =\frac{x_{1}}{2 \pi}+\left\{\frac{x_{3}}{2 \pi}-\frac{x_{2}}{2 \pi}\right\}+\left\{1-\frac{x_{4}}{2 \pi}\right\}=\frac{2}{\pi} \arcsin (\sqrt{y})
\end{aligned}
$$

and hence, by differentiation

$$
f_{Y}(y)=\frac{1}{\pi} \frac{1}{\sqrt{(1-y) y}} \quad 0 \leq y \leq 1
$$

and zero otherwise.

Example 3 Consider transformed r.v. $T=\tan X$. Then the range of T, \mathbb{T} is \mathbb{R}, but the transformation is not 1-1. However, from first principles, we have, for $t>0$

$$
F_{T}(t)=P[T \leq t]=P[\tan X \leq t]
$$

Figure 3 helps identify the required set A_{t} : in this case, it is the union of three disjoint intervals

$$
A_{t}=\left[0, x_{1}\right] \cup\left[\frac{\pi}{2}, x_{2}\right] \cup\left[\frac{3 \pi}{2}, 2 \pi\right]=\left[0, \tan ^{-1} t\right] \cup\left[\frac{\pi}{2}, \pi+\tan ^{-1} t\right] \cup\left[\frac{3 \pi}{2}, 2 \pi\right]
$$

(note, for values of $t<0$, the union will be of only two intervals, but the calculation proceeds identically) so that

Figure 3: Computation of A_{t} for $T=\tan X$

$$
\begin{aligned}
F_{T}(t) & =P[\tan X \leq t]=P\left[X \leq x_{1}\right]+P\left[\frac{\pi}{2} \leq X \leq x_{2}\right]+P\left[\frac{3 \pi}{2} \leq X \leq 2 \pi\right] \\
& =\left\{\frac{1}{2 \pi} \tan ^{-1} t\right\}+\frac{1}{2 \pi}\left\{\pi+\tan ^{-1} t-\frac{\pi}{2}\right\}+\frac{1}{2 \pi}\left\{2 \pi-\frac{3 \pi}{2}\right\}=\frac{1}{\pi} \tan ^{-1} t+\frac{1}{2}
\end{aligned}
$$

and hence, by differentiation

$$
f_{T}(t)=\frac{1}{\pi} \frac{1}{1+t^{2}} \quad t \in \mathbb{R}
$$

