556: MATHEMATICAL STATISTICS I
MEASURE AND INTEGRATION : KEY THEOREMS
1. RESULTS FOR MEASURABLE FUNCTIONS

Theorem 1. MEASURABILITY UNDER COMPOSITION
Let g1 and gy be measurable functions on E C  with ranges in R*. Let f be a Borel function from R* x R*
into R*. Then the composite function h, defined on E by

h(w) = f(91(w1),92 (w2))

is measurable.

Proof. The function g = (g1, g2) has domain £ and range R* x R*, and is measurable as g; and g, are
measurable, and denote h = f o g (the operator o indicates composition, i.e.

hwi,we) = (fog)(wiwe) if  h(wi,ws) = f(g(wi,w2)) = f(g1(w1),92(w2)).
If B € B, then f~! (B) is a Borel set as f is a Borel function. Thus the inverse image under b,
W (B) =g~ (F71(B))
is measurable as g; and g2, and hence g, are measurable. I

Corollary 2. If g is a measurable function from E into R*, and f is a continuous function from R* into R*,
then h = f o g is measurable.

Theorem 3. MEASURABILITY UNDER ELEMENTARY OPERATIONS
Let g1 and go be measurable functions defined on E C ) into R*, and let c be any real number. Then all of the
following composite and other related functions are measurable

g1+ 92,91+ ¢, q192,¢91,91/92, 911, 91 V 92, 91 A g2, 97, 97 -

Proof. In each case, we examine the domain of the composite function to ensure measurability in the
Borel o-algebra. Consider g; + g¢o; this is not defined on the set

{w:g1 (w) = —g2 (w) = oo}

(as 0o &+ oo is not defined), but this set is measurable, and so is the domain of g1 + g2. Let f (1, 22) =
x1 + x2 be a continuous function defined on R* x R*. Then, by Theorem 1 and its corollary, g; + g¢» is
measurable. Taking g = ¢ proves that g; + c is measurable.

The function g1¢g> is defined everywhere on E; it’s measurability follows from Theorem 1, setting
f (x1,22) = z122. Setting go = c proves that cg; is measurable.

The function g¢; /g¢s is defined everywhere except on the union of sets
{wigr(w) =g2(w) =0} U{w: £g1 (w) = £g2 (w) = o0}
Similarly, if ¢ = 0, |g1|“ is defined except on

{w: g1 (w) = +o0};



if ¢ < 0, it is defined except on
{w: g1 (w) =0}.
If ¢ > 0, itis defined everywhere. All of these sets are measurable Thus, we consider in turn functions
[z, m0) =a1/ze f(z) =2°

and use Theorem 1.

The functions g1 V g2, g1 A g2 are defined everywhere; so we consider functions
f(z1,29) = max {z1, 22} f(z1,22) = min{zy, 29}
and again use Theorem 1. Finally, setting g» = 0 yields the measurability of g; and g; . 1
Theorem 4. If g; and g, are measurable functions on a common domain, then each of the sets
{wig(Ww) <gW)} {vigw=0w} {vigWw) >g W}
is measurable.
Proof. Since g; and g» are measurable, then f = g; — g2 is measurable, and thus the two sets
{fw:flw) >0} {w:f(w)=0}
are measurable. Since
{w:gr (W) < g (W)} ={w: f(w) >0}

and

wiggw =g w}r={w: f(w)=0tU{w: g1 (w) = g2 (w) = oo}
then {w: g1 (w) < g2 (w)} and {w : g1 (w) = g2 (w)} are measurable, and so is

{fwign(w) <gWl={w: g (W) <gW}u{w:g (W) =g2(w)}.

|

Theorem 5. MEASURABILITY UNDER LIMIT OPERATIONS
If {gn} is a sequence of measurable functions, the functions sup g,, and inf g,, are measurable.
n n

Proof. Let g = sup g,. Then for real z, consider
n

9n ' ([0, 2]) = {w: gn (v) < 7}
and

97 ([~o0,2]) ={w: g (w) <z}
If g = sup gy, then g,, < g for all n, and

gw)<z=g,(w) <z sothat weg " ([~o0,2]) = weg," ([~o0 ]
so that
97" ([=00,2]) C g;," ([—o0, ])
for all n. Thus, in fact

g ([=o0,2]) = (g ([0, 2])

and hence ¢ is measurable, as the intersection of measurable sets is measurable. The result for inf
n
follows by noting that
inf g, = —sup (—gn) -
n n



Theorem 6. MEASURABILITY UNDER LIMINF/LIMSUP
If {gn} is a sequence of measurable functions, the functions lim sup g,, and lim inf g,, are measurable.
n n

Proof. This follows from Theorem 5, as

limsup g, = inf {sup gn} and liminf g, = sup { inf gn}
n E ol n>k n ko \n=2k

2. SIMPLE FUNCTIONS AND THEIR CONVERGENCE PROPERTIES.

Definition 1. Simple Functions
A simple function, v, is a set function defined on elements w of sample space Q2 by

k
VW)= aila, (W)
i=1

for real constants ay, ..., a, and measurable sets Ay, ..., A, for some k = 1,2, 3, ..., where 1 4(w) is the indicator
function, where
1 wed

IA(W):{O Wi A

Note that any such simple function, can be re-expressed as a simple function defined for a partition of (2,
E17 ey El/

l
Y(w) =) el W)
=1

by suitable choice of the constants e, ..., ey.

Theorem 7. A non-negative function on ) is measurable if and only if it is the limit of an increasing sequence
of non-negative simple functions.

Proof. Suppose that g is a nonnegative measurable function. For each positive integer n, define the
simple function ¢,, on Q2 by

L.m m+1
bnw)= oo i TS g(w) <

form=0,1,2,...,2" — 1, and
Y, (W) =n if n<g(w).

Then {v,, } is an increasing sequence of non-negative simple functions. Since

9 @) = 9@ < 5r > g()

and ¢,, (w) = nif g(w) = oo, then, for all w,
Up (W) = 9 (W)
and we have found the sequence required for the result.

Now suppose that g is a limit of an increasing sequence of non-negative simple functions. Then it is
measurable by Theorem 6. 1



Theorem 8. A function g defined on §2 is measurable if and only if it is the limit of a sequence of simple functions.

Proof. Suppose that g is measurable. Then g and g~ are measurable and non-negative, and thus can
be represented as limits of simple functions {;\ } and {1, }, by the Theorem 7. Consider the sequence
of simple functions defined by {1, — v, }; this sequence converges to g* — g~ = g, and we have the
sequence of simple functions required for the result.

Now suppose that g is a limit of a sequence of simple functions. Then it is measurable by Theorem
6.1

3. KEY THEOREMS

The following key theorems describe the behaviour of the Lebesgue-Stieltjes integral. In particular,
the theorems specify when it is legitimate to exchange the order of limit and integral operators. In the
theorems, we have a general measure space (2, 7, v), and measurable set £ € F.

Theorem 9. Lebesgue Monotone Convergence Theorem
If { fn} is an increasing sequence of nonnegative measurable functions, and if

lim f, =f almost everywhere
n—oo

then
lim fndv = / fdv
E

n—oo E

Proof. Let the (real) sequence {i, } be defined by

in:/fndy.
E

in = / Jndv < / Jrt1dv = inpq as fn < fnta
E E

Then, by a previous result

so {iy} is increasing. Let L denote the (possibly infinite) limit of {i,}. Now, since f,, < f almost
everywhere for all n, we have (by the same previous result) that

Aﬁ@glywziLgéﬁm (1)

Now consider constant ¢ with 0 < ¢ < 1, and let ¥ be any simple function satisfying 0 < ¢ < f. Let
E,={w:weFand cy (w) < f (w)}

and as E,, C E, E, is measurable, and because f,, < fn+1, B, € Ep4q for all n, so {E,} is increasing.
Let the limit of the { £, } sequence be denoted

o0
F:UET
=1

The set E'N F’ has measure zero, because lim f, = fa.e.and 0 < ¢ip) < ¢ < f. Hence,as E, C F
/ fndv > fndv > / cpdy = c Pdu.
E E, n En

4



Taking the limit as n — oo,

L= lim fandv > ¢ lim ¢dy—c/ d)dl/:c/ Wdv
E

n—oo E n—oo

the final step following as E' N F’ has measure zero. Thus, as this holds for all ¢ such that 0 < ¢ < 1,

we must have that
L> / Pdy
E

whenever 0 < ¢ < f. Hence L is an upper bound the integral of such a simple function on £. But,
by the supremum definition from lectures, the integral of f with respect to v on E is the least upper
bound on the integral of such simple functions on £. Hence

L> [E fdv. ()

Thus, combining (1) and (2), we have that

L= lim fnduz/ fdv.
T JE E

Theorem 10. Fatou’s Lemma (or Lebesgue-Fatou Theorem)
If {fn} is a sequence of non-negative measurable functions, and if

liminf f, = f almost everywhere
n—oo

/E fduglinniicgf{ /E fndy}

Proof. The function liminf f,, is measurable. For k =1,2,3, ... let

then

hy =inf{f, :n>k}.

Then, by definition of infimum, hj, < fj for all k£, and thus

/ hydv S/ frdv forall k = liminf{/ hkdy} < hmmf{/ fkdu}. (3)
E E k—oo E

Now {ht} is an increasing sequence of non-negative functions, we have in the limit
lim hg = liminf f,, = f
k—oo n—0o0

almost everywhere. Now, by the Monotone Convergence Theorem,

) - (o
/E fdugigicgf{ /E fkdu}.

Hence, by (3),



Some corollaries follow immediately from this important theorem

1 If Ey, Eo, ..., E, are disjoint, with U E; = E, and f is non-negative, then

(L)

Proof: Let {1, } be an increasing sequence of 51mple functions that converge to f, where

Mg
by, = Z arjlay,

j=1
say. Then,

mE n

/ Yrdv = Z ap;v (BN Ag;j) Z Z ai;v (E; N Agj) as the E; are disjoint
E

J=1 J=11i=1

_ Zn: {% arv (E; N Akj)} = i {/E wkdy}

i=1 | j=1 i=1

by hence the monotone convergence theorem,

/Efdz/ - klln;o{/lawkdu} :kll”c}o{izn:{/ wkdu}} :Zzn;{klggo{/lqpkdy}}
- 2{[ {madat =3[ o

i=1 =1

Now consider a countable (rather than merely finite) collection { E;} with U E; = E. Thenif f

oL}

Proof: For each positive integer n, let 4, = U E;, and define f,, = I, f. Then {f,} is an
i=1
increasing sequence of non-negative functions, that converges to f (on E). Hence

ot { - g, ) - {5 )} - (o)

=1 =1

is non-negative

Let f be a non-negative function on 2. Then the function defined on F by

@(E)=[Efdv

is a measure. The only part of the definition of a measure that needs verifying is the countable
additivity, by the last result, we have directly that

@ (U&) = Z‘P(E)
i=1 i=1

when the {E;} are disjoint.



For the results above (and the results proved in lectures), we have considered only the integrals of
non-negative measurable functions. We now extend them for general measurable functions, using
the decomposition into positive and negative part functions f = f* — f~ where both f* and f~ are
measurable and non-negative, and we have

/Efdy:/Ef*du/Ef‘du.

Recall that we say that f is integrable if both f* and f~ are integrable, and now denote the set of all
functions integrable on E with respect to v by L (v). From previous arguments we have that

feLpgv) e fTand f~ € Lg (v)
Some results can be proved for the functions in this class.

LEMMA
If v (E) =0, then

feLe) and /Efdl/—O

Proof. We have by definition

/Efdu:/Ef+du—/Ef—du:0—0:0

LEMMA
If feLg, (v)and E1 C Ey, then f € Lg, (v).

Proof. By a result from lectures

/Ef+du§/Ef+dy and /Ef_dug/Ef_du

LEMMA -
If {E,} is a sequence of disjoint sets with |J E,, = E,and f € Lg (v), then
=1

/Efdyzg{/Enfdy}

Proof. The previous Lemma ensures that f € L, (v) as E,, C E for all n. By using the result proved
earlier, that if f is non-negative then

o0

fro-S{f

n=1



we use the positive and negative part decompositions

/Efdu = /Ef+du—/Ef_du—i{/Enf+dy}—i{/Eanrdu}

= ni;[/ﬂf*dy—/nfdy}
- S { o {] se)

1
Corollary 11. If f € Lq (v), then the function ¢ defined on F by

sO(E):[Efdv

is additive.

Proof. As for previous result. I

LEMMA
If f=gae onFE,andifg € Lg(v), then f € Lg (v) and

| fdv= | gav

Proof. Define A={w:w € E, f (w) = g(w)}. Then E N A" has measure zero, and

/Ef+dV—Af+dy—Ag+du—/Eg+dy
/Ef_du:/Af_dy:/Ag_du:/Eg_dy

Adding these equations, we have immediately that f € L () and

| g = [ gav

and

LEMMA
If f € Lg (v) and cis any real number, then c¢f € Lg () and

/E(cf)dl/—c/Ede



Proof. Consider only the non-trivial case ¢ # 0. Suppose first ¢ > 0, and let g be a non-negative
function. For any simple function v, say

k
)= Z a; 1,
i=1

we have
Y <gecp <cg.
and
k k
/ (c)dv = Z (ca))v(ENA;) = cZaiu(EﬂAi) = c/ Ydv
E i=1 i=1 E
Therefore

/E(cf)dyzc/Efdy

by the supremum definition, and the result follows for ¢ > 0 using this result, and the decomposition
cf =cft —cf. Forc <0, write
so that the result follows, as —c > 0. 1

LEMMA
If f,ge Lg(v), then f+ g€ Lg(v)and

/E(f+g)dy:/Efdu+[Egdy

Proof. We prove the result two several stages. First suppose that f and g are non-negative, and let

{ 1#% f)} and { glg)} be increasing sequences of simple functions with limits f and g respectively. Then
{wgf) + w%g)} has limit f + ¢, and as

[ (04 o) av= [ Dav+ [ ofpan
E E E

(see this result by using the measure definition of the integral of a simple function), we have, taking

the limit as n — oo,
/(f—l—g)dyz/fdu—i-/gdu.
E E E

Now consider the general case; define the following subsets of F

By = {w: f(w)>20,9(w) >0}
Ey, = {w:f(w)<0,9(w)>0}
By = {w:f(w)>20,9w)<0,(f+9)(w) >0}
Ey = {w: f(w) <0,9(w)>0,(f+9)(w) >0}
By = {w:f(w)>0,9(w)<0,(f+9)(w) <0}
Eg = {w:f(w)<0,9(w)=0,(f+9g)(w) <0}



6
Then E,,,n = 1,2, ...,6 are disjoint, and |J E,, = E. By the Lemma ??, proving that
1

n=

/ (f+g)dv = Enfdu+/ngdy

n

for each n is sufficient to prove the result. The proofs for each separate case are very similar; so
consider for example set F3. Then on E, the functions f, —g and f + g are non-negative, and threfore
by part one of this proof,

Esfdvz/Eg(—g)dVJr/Eg(erg)dvz—/Esgdv+/ES(f+g)dV

and the result follows. 1

LEMMA
The function f € Lg (v) if and only if | f| € Lg (v). In this instance,

/E fiv < /E £l dv.

Proof. We have identified previously that f is integrable if the positive and negative part functions are
integrable, and this is the case if and only if the function

fl=f"+f
is integrable. If this is the case, then
/ fdv / ft—fav / frav
E E E
|

Corollary 12. If g € L (v), and |f| < g, then f € LE (v)

= < +

/E fdv

= [ 1n1av

LEMMA
If f,ge Lg(v),and f < ga.e. on E, then

[ tav< [ gav

that is, the Lebesgue-Stieltjes Integral operator preserves ordering of functions.
Proof. We have g — f > 0, so the result follows from Integral Result (e) from lectures, and Lemma 3.. &

Corollary 13. If v (E) < oo, and m < f < M on E, for real values m and M, then by considering simple
functions v, = mlg and 1y, = MIg, for which ¢, < f <1, we have

muv (E) < /Efdy < Mv(E)

10



LEMMA
Suppose f,g € LE (v), and that for A C E,

/A fdv < /A gdv.

Proof. Let F1 = {w:w e FE, f(w) >g(w)}, sothat f — g > 0 on F;. Thus, by the assumption of the

Lemma,
| ¢-gar=0
F

and hence by f — g = 0 or f = g a.e. on Fj, by Integral Result (f) from lectures. 1

[ g [ ga.

Theorem 15. Lebesgue Dominated Convergence Theorem
If { fn} is a sequence of measurable functions, and if

Then f < ga.e.on E.

Corollary 14. If f,g € Lg (v) and if

for A C E, then f = ga.e. on E.

lim f, =f almost everywhere

n—oo

and | fn| < g for all n, for some g € Lg (v), then

lim fndu:/ fdv

Proof. {f»} and f are measurable functions. By using Fatou’s Lemma (Theorem 10) on non-negative

sequence {g + fn}
/ (9 + f)dv < liminf {/ (g+ fn) dy}
E n—oo E

/ fdv < liminf {/ fndy} . 4)
E n—oo E

Similarly, by applying the result to {g — f,,}, we have that

/E(gf)dyglinni)ig‘}f{/E(gfn)dV} /Efdygligrlgf{/Efndl/}

Multiplying through by —1, we have by properties of lim sup and lim inf that

/ fdv > limsup {/ fndu} (5)
E n—0o0 E

and hence combining (4) and (5), we have by definition

lim fndzj:/ fdv

so that

11



Corollary 16. If { f,,} is a uniformly bounded sequence (bounded above and below by a pair of real constants) of
measurable functions such that
lim f,=7Ff almost everywhere

and if v (E) < oo, then

lim fndyz/fdu.

LEBESGUE-STIELTJES INTEGRALS ON R.

Rather than considering a general sample space €2, we now consider the specific case when 2 = R,
with corresponding sigma-algebra which is the Borel sigma-algebra. In this case, the measure v will
often be expressed in terms of (or be generated by) an increasing real function ' on E. Let E be a set
in the Borel sigma-algebra. Then for measurable function g, we can express the integral as

/gdy:/ng or /gduz/g(m)dF(x)
E E E E

b 00
/ng:/ g dF and / ng:/ng
a (avb] —0o0 R

with special cases
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