556: Mathematical Statistics I

MEASURE AND INTEGRATION : KEY THEOREMS

1. RESULTS FOR MEASURABLE FUNCTIONS

Theorem 1. MEASURABILITY UNDER COMPOSITION

Let g_{1} and g_{2} be measurable functions on $E \subset \Omega$ with ranges in \mathbb{R}^{*}. Let f be a Borel function from $\mathbb{R}^{*} \times \mathbb{R}^{*}$ into \mathbb{R}^{*}. Then the composite function h, defined on E by

$$
h(\omega)=f\left(g_{1}\left(\omega_{1}\right), g_{2}\left(\omega_{2}\right)\right)
$$

is measurable.
Proof. The function $g=\left(g_{1}, g_{2}\right)$ has domain E and range $\mathbb{R}^{*} \times \mathbb{R}^{*}$, and is measurable as g_{1} and g_{2} are measurable, and denote $h=f \circ g$ (the operator \circ indicates composition, i.e.

$$
h\left(\omega_{1}, \omega_{2}\right)=(f \circ g)\left(\omega_{1}, \omega_{2}\right) \quad \text { if } \quad h\left(\omega_{1}, \omega_{2}\right)=f\left(g\left(\omega_{1}, \omega_{2}\right)\right)=f\left(g_{1}\left(\omega_{1}\right), g_{2}\left(\omega_{2}\right)\right) .
$$

If $B \in \mathcal{B}$, then $f^{-1}(B)$ is a Borel set as f is a Borel function. Thus the inverse image under h,

$$
h^{-1}(B)=g^{-1}\left(f^{-1}(B)\right)
$$

is measurable as g_{1} and g_{2}, and hence g, are measurable.
Corollary 2. If g is a measurable function from E into \mathbb{R}^{*}, and f is a continuous function from \mathbb{R}^{*} into \mathbb{R}^{*}, then $h=f \circ g$ is measurable.

Theorem 3. MEASURABILITY UNDER ELEMENTARY OPERATIONS

Let g_{1} and g_{2} be measurable functions defined on $E \subset \Omega$ into \mathbb{R}^{*}, and let c be any real number. Then all of the following composite and other related functions are measurable

$$
g_{1}+g_{2}, g_{1}+c, g_{1} g_{2}, c g_{1}, g_{1} / g_{2},\left|g_{1}\right|^{c}, g_{1} \vee g_{2}, g_{1} \wedge g_{2}, g_{1}^{+}, g_{1}^{-}
$$

Proof. In each case, we examine the domain of the composite function to ensure measurability in the Borel σ-algebra. Consider $g_{1}+g_{2}$; this is not defined on the set

$$
\left\{\omega: g_{1}(\omega)=-g_{2}(\omega)= \pm \infty\right\}
$$

(as $\infty \pm \infty$ is not defined), but this set is measurable, and so is the domain of $g_{1}+g_{2}$. Let $f\left(x_{1}, x_{2}\right)=$ $x_{1}+x_{2}$ be a continuous function defined on $\mathbb{R}^{*} \times \mathbb{R}^{*}$. Then, by Theorem 1 and its corollary, $g_{1}+g_{2}$ is measurable. Taking $g_{2}=c$ proves that $g_{1}+c$ is measurable.

The function $g_{1} g_{2}$ is defined everywhere on E; it's measurability follows from Theorem 1 , setting $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$. Setting $g_{2}=c$ proves that $c g_{1}$ is measurable.

The function g_{1} / g_{2} is defined everywhere except on the union of sets

$$
\left\{\omega: g_{1}(\omega)=g_{2}(\omega)=0\right\} \cup\left\{\omega: \pm g_{1}(\omega)= \pm g_{2}(\omega)=\infty\right\}
$$

Similarly, if $c=0,\left|g_{1}\right|^{c}$ is defined except on

$$
\left\{\omega: g_{1}(\omega)= \pm \infty\right\}
$$

if $c<0$, it is defined except on

$$
\left\{\omega: g_{1}(\omega)=0\right\}
$$

If $c>0$, it is defined everywhere. All of these sets are measurable Thus, we consider in turn functions

$$
f\left(x_{1}, x_{2}\right)=x_{1} / x_{2} \quad f(x)=x^{c}
$$

and use Theorem 1.
The functions $g_{1} \vee g_{2}, g_{1} \wedge g_{2}$ are defined everywhere; so we consider functions

$$
f\left(x_{1}, x_{2}\right)=\max \left\{x_{1}, x_{2}\right\} \quad f\left(x_{1}, x_{2}\right)=\min \left\{x_{1}, x_{2}\right\}
$$

and again use Theorem 1. Finally, setting $g_{2}=0$ yields the measurability of g_{1}^{+}and g_{1}^{-}.
Theorem 4. If g_{1} and g_{2} are measurable functions on a common domain, then each of the sets

$$
\left\{\omega: g_{1}(\omega)<g_{2}(\omega)\right\} \quad\left\{\omega: g_{1}(\omega)=g_{2}(\omega)\right\} \quad\left\{\omega: g_{1}(\omega)>g_{2}(\omega)\right\}
$$

is measurable.
Proof. Since g_{1} and g_{2} are measurable, then $f=g_{1}-g_{2}$ is measurable, and thus the two sets

$$
\{\omega: f(\omega)>0\} \quad\{\omega: f(\omega)=0\}
$$

are measurable. Since

$$
\left\{\omega: g_{1}(\omega)<g_{2}(\omega)\right\} \equiv\{\omega: f(\omega)>0\}
$$

and

$$
\left\{\omega: g_{1}(\omega)=g_{2}(\omega)\right\} \equiv\{\omega: f(\omega)=0\} \cup\left\{\omega: g_{1}(\omega)=g_{2}(\omega)= \pm \infty\right\}
$$

then $\left\{\omega: g_{1}(\omega)<g_{2}(\omega)\right\}$ and $\left\{\omega: g_{1}(\omega)=g_{2}(\omega)\right\}$ are measurable, and so is

$$
\left\{\omega: g_{1}(\omega) \leq g_{2}(\omega)\right\} \equiv\left\{\omega: g_{1}(\omega)<g_{2}(\omega)\right\} \cup\left\{\omega: g_{1}(\omega)=g_{2}(\omega)\right\}
$$

Theorem 5. MEASURABILITY UNDER LIMIT OPERATIONS

If $\left\{g_{n}\right\}$ is a sequence of measurable functions, the functions $\sup _{n} g_{n}$ and $\inf _{n} g_{n}$ are measurable.
Proof. Let $g=\sup _{n} g_{n}$. Then for real x, consider

$$
g_{n}^{-1}([-\infty, x]) \equiv\left\{\omega: g_{n}(\omega) \leq x\right\}
$$

and

$$
g^{-1}([-\infty, x]) \equiv\{\omega: g(\omega) \leq x\}
$$

If $g=\sup _{n} g_{n}$, then $g_{n} \leq g$ for all n, and

$$
g(\omega) \leq x \Longrightarrow g_{n}(\omega) \leq x \quad \text { so that } \quad \omega \in g^{-1}([-\infty, x]) \Longrightarrow \omega \in g_{n}^{-1}([-\infty, x])
$$

so that

$$
g^{-1}([-\infty, x]) \subseteq g_{n}^{-1}([-\infty, x])
$$

for all n. Thus, in fact

$$
g^{-1}([-\infty, x])=\bigcap_{n} g_{n}^{-1}([-\infty, x])
$$

and hence g is measurable, as the intersection of measurable sets is measurable. The result for $\inf _{n}$ follows by noting that

$$
\inf _{n} g_{n}=-\sup _{n}\left(-g_{n}\right)
$$

Theorem 6. MEASURABILITY UNDER LIMINF/LIMSUP

If $\left\{g_{n}\right\}$ is a sequence of measurable functions, the functions $\lim _{n} \sup g_{n}$ and $\lim _{n} \inf g_{n}$ are measurable.
Proof. This follows from Theorem 5, as

$$
\limsup _{n} g_{n}=\inf _{k}\left\{\sup _{n \geq k} g_{n}\right\} \quad \text { and } \quad \liminf _{n} g_{n}=\sup _{k}\left\{\inf _{n \geq k} g_{n}\right\}
$$

2. SIMPLE FUNCTIONS AND THEIR CONVERGENCE PROPERTIES.

Definition 1. Simple Functions

A simple function, ψ, is a set function defined on elements ω of sample space Ω by

$$
\psi(\omega)=\sum_{i=1}^{k} a_{i} I_{A_{i}}(\omega)
$$

for real constants a_{1}, \ldots, a_{k} and measurable sets A_{1}, \ldots, A_{k}, for some $k=1,2,3, \ldots$, where $I_{A}(\omega)$ is the indicator function, where

$$
I_{A}(\omega)=\left\{\begin{array}{ll}
1 & \omega \in A \\
0 & \omega \notin A
\end{array} .\right.
$$

Note that any such simple function, can be re-expressed as a simple function defined for a partition of Ω, E_{1}, \ldots, E_{l},

$$
\psi(\omega)=\sum_{i=1}^{l} e_{i} I_{E_{i}}(\omega)
$$

by suitable choice of the constants e_{1}, \ldots, e_{k}.
Theorem 7. A non-negative function on Ω is measurable if and only if it is the limit of an increasing sequence of non-negative simple functions.

Proof. Suppose that g is a nonnegative measurable function. For each positive integer n, define the simple function ψ_{n} on Ω by

$$
\psi_{n}(\omega)=\frac{m}{2^{n}} \quad \text { if } \frac{m}{2^{n}} \leq g(\omega)<\frac{m+1}{2^{n}}
$$

for $m=0,1,2, \ldots, 2^{n}-1$, and

$$
\psi_{n}(\omega)=n \quad \text { if } n \leq g(\omega) .
$$

Then $\left\{\psi_{n}\right\}$ is an increasing sequence of non-negative simple functions. Since

$$
\left|\psi_{n}(\omega)-g(\omega)\right|<\frac{1}{2^{n}} \quad \text { if } n>g(\omega)
$$

and $\psi_{n}(\omega)=n$ if $g(\omega)=\infty$, then, for all ω,

$$
\psi_{n}(\omega) \rightarrow g(\omega)
$$

and we have found the sequence required for the result.
Now suppose that g is a limit of an increasing sequence of non-negative simple functions. Then it is measurable by Theorem 6 .

Theorem 8. A function g defined on Ω is measurable if and only if it is the limit of a sequence of simple functions.
Proof. Suppose that g is measurable. Then g^{+}and g^{-}are measurable and non-negative, and thus can be represented as limits of simple functions $\left\{\psi_{n}^{+}\right\}$and $\left\{\psi_{n}^{-}\right\}$, by the Theorem 7. Consider the sequence of simple functions defined by $\left\{\psi_{n}^{+}-\psi_{n}^{-}\right\}$; this sequence converges to $g^{+}-g^{-}=g$, and we have the sequence of simple functions required for the result.

Now suppose that g is a limit of a sequence of simple functions. Then it is measurable by Theorem 6.

3. KEY THEOREMS

The following key theorems describe the behaviour of the Lebesgue-Stieltjes integral. In particular, the theorems specify when it is legitimate to exchange the order of limit and integral operators. In the theorems, we have a general measure space $(\Omega, \mathcal{F}, \nu)$, and measurable set $E \in \mathcal{F}$.

Theorem 9. Lebesgue Monotone Convergence Theorem
If $\left\{f_{n}\right\}$ is an increasing sequence of nonnegative measurable functions, and if

$$
\lim _{n \rightarrow \infty} f_{n}=f \quad \text { almost everywhere }
$$

then

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \nu=\int_{E} f d \nu
$$

Proof. Let the (real) sequence $\left\{i_{n}\right\}$ be defined by

$$
i_{n}=\int_{E} f_{n} d \nu
$$

Then, by a previous result

$$
i_{n}=\int_{E} f_{n} d \nu \leq \int_{E} f_{n+1} d \nu=i_{n+1} \quad \text { as } f_{n} \leq f_{n+1}
$$

so $\left\{i_{n}\right\}$ is increasing. Let L denote the (possibly infinite) limit of $\left\{i_{n}\right\}$. Now, since $f_{n} \leq f$ almost everywhere for all n, we have (by the same previous result) that

$$
\begin{equation*}
\int_{E} f_{n} d \nu \leq \int_{E} f d \nu \Longrightarrow L \leq \int_{E} f d \nu \tag{1}
\end{equation*}
$$

Now consider constant c with $0<c<1$, and let ψ be any simple function satisfying $0 \leq \psi \leq f$. Let

$$
E_{n} \equiv\left\{\omega: \omega \in E \text { and } c \psi(\omega) \leq f_{n}(\omega)\right\}
$$

and as $E_{n} \subseteq E, E_{n}$ is measurable, and because $f_{n} \leq f_{n+1}, E_{n} \subseteq E_{n+1}$ for all n, so $\left\{E_{n}\right\}$ is increasing. Let the limit of the $\left\{E_{n}\right\}$ sequence be denoted

$$
F=\bigcup_{i=1}^{\infty} E_{n}
$$

The set $E \cap F^{\prime}$ has measure zero, because $\lim _{n \rightarrow \infty} f_{n}=f$ a.e. and $0 \leq c \psi<\psi \leq f$. Hence, as $E_{n} \subseteq E$

$$
\int_{E} f_{n} d \nu \geq \int_{E_{n}} f_{n} d \nu \geq \int_{E_{n}} c \psi d \nu=c \int_{E_{n}} \psi d \nu
$$

Taking the limit as $n \rightarrow \infty$,

$$
L=\lim _{n \rightarrow \infty} \int_{E} f_{n} d \nu \geq c \lim _{n \rightarrow \infty} \int_{E_{n}} \psi d \nu=c \int_{F} \psi d \nu=c \int_{E} \psi d \nu
$$

the final step following as $E \cap F^{\prime}$ has measure zero. Thus, as this holds for all c such that $0<c<1$, we must have that

$$
L \geq \int_{E} \psi d \nu
$$

whenever $0 \leq \psi \leq f$. Hence L is an upper bound the integral of such a simple function on E. But, by the supremum definition from lectures, the integral of f with respect to ν on E is the least upper bound on the integral of such simple functions on E. Hence

$$
\begin{equation*}
L \geq \int_{E} f d \nu \tag{2}
\end{equation*}
$$

Thus, combining (1) and (2), we have that

$$
L=\lim _{n \rightarrow \infty} \int_{E} f_{n} d \nu=\int_{E} f d \nu
$$

Theorem 10. Fatou's Lemma (or Lebesgue-Fatou Theorem)

If $\left\{f_{n}\right\}$ is a sequence of non-negative measurable functions, and if

$$
\liminf _{n \rightarrow \infty} f_{n}=f \quad \text { almost everywhere }
$$

then

$$
\int_{E} f d \nu \leq \liminf _{n \rightarrow \infty}\left\{\int_{E} f_{n} d \nu\right\}
$$

Proof. The function $\liminf _{n \rightarrow \infty} f_{n}$ is measurable. For $k=1,2,3, \ldots$ let

$$
h_{k}=\inf \left\{f_{n}: n \geq k\right\}
$$

Then, by definition of infimum, $h_{k} \leq f_{k}$ for all k, and thus

$$
\begin{equation*}
\int_{E} h_{k} d \nu \leq \int_{E} f_{k} d \nu \quad \text { for all } k \quad \liminf _{k \rightarrow \infty}\left\{\int_{E} h_{k} d \nu\right\} \leq \liminf _{k \rightarrow \infty}\left\{\int_{E} f_{k} d \nu\right\} \tag{3}
\end{equation*}
$$

Now $\left\{h_{k}\right\}$ is an increasing sequence of non-negative functions, we have in the limit

$$
\lim _{k \rightarrow \infty} h_{k}=\liminf _{n \rightarrow \infty} f_{n}=f
$$

almost everywhere. Now, by the Monotone Convergence Theorem,

$$
\lim _{k \rightarrow \infty}\left\{\int_{E} h_{k} d \nu\right\}=\int_{E}\left\{\lim _{k \rightarrow \infty} h_{k}\right\} d \nu=\int_{E} f d \nu
$$

Hence, by (3),

$$
\int_{E} f d \nu \leq \liminf _{k \rightarrow \infty}\left\{\int_{E} f_{k} d \nu\right\}
$$

Some corollaries follow immediately from this important theorem
1 If $E_{1}, E_{2}, \ldots, E_{n}$ are disjoint, with $\bigcup_{i=1}^{n} E_{i} \equiv E$, and f is non-negative, then

$$
\int_{E} f d \nu=\sum_{i=1}^{n}\left\{\int_{E_{i}} f d \nu\right\}
$$

Proof: Let $\left\{\psi_{k}\right\}$ be an increasing sequence of simple functions that converge to f, where

$$
\psi_{k}=\sum_{j=1}^{m_{k}} a_{k j} I_{A_{k j}}
$$

say. Then,

$$
\begin{aligned}
\int_{E} \psi_{k} d \nu & =\sum_{j=1}^{m_{k}} a_{k j} \nu\left(E \cap A_{k j}\right)=\sum_{j=1}^{m_{k}} \sum_{i=1}^{n} a_{k j} \nu\left(E_{i} \cap A_{k j}\right) \quad \text { as the } E_{i} \text { are disjoint } \\
& =\sum_{i=1}^{n}\left\{\sum_{j=1}^{m_{k}} a_{k j} \nu\left(E_{i} \cap A_{k j}\right)\right\}=\sum_{i=1}^{n}\left\{\int_{E_{i}} \psi_{k} d \nu\right\}
\end{aligned}
$$

by hence the monotone convergence theorem,

$$
\begin{aligned}
\int_{E} f d \nu & =\lim _{k \rightarrow \infty}\left\{\int_{E} \psi_{k} d \nu\right\}=\lim _{k \rightarrow \infty}\left\{\sum_{i=1}^{n}\left\{\int_{E_{i}} \psi_{k} d \nu\right\}\right\}=\sum_{i=1}^{n}\left\{\lim _{k \rightarrow \infty}\left\{\int_{E_{i}} \psi_{k} d \nu\right\}\right\} \\
& =\sum_{i=1}^{n}\left\{\int_{E_{i}}\left\{\lim _{k \rightarrow \infty} \psi_{k}\right\} d \nu\right\}=\sum_{i=1}^{n}\left\{\int_{E_{i}} f d \nu\right\} .
\end{aligned}
$$

2 Now consider a countable (rather than merely finite) collection $\left\{E_{i}\right\}$ with $\bigcup_{i=1}^{\infty} E_{i} \equiv E$. Then if f is non-negative

$$
\int_{E} f d \nu=\sum_{i=1}^{\infty}\left\{\int_{E_{i}} f d \nu\right\}
$$

Proof: For each positive integer n, let $A_{n} \equiv \bigcup_{i=1}^{n} E_{i}$, and define $f_{n}=I_{A_{n}} f$. Then $\left\{f_{n}\right\}$ is an increasing sequence of non-negative functions, that converges to f (on E). Hence

$$
\int_{E} f d \nu=\lim _{n \rightarrow \infty}\left\{\int_{E} f_{n} d \nu\right\}=\lim _{n \rightarrow \infty}\left\{\int_{A_{n}} f d \nu\right\}=\lim _{n \rightarrow \infty}\left\{\sum_{i=1}^{n}\left\{\int_{E_{i}} f d \nu\right\}\right\}=\sum_{i=1}^{\infty}\left\{\int_{E_{i}} f d \nu\right\}
$$

3 Let f be a non-negative function on Ω. Then the function defined on \mathcal{F} by

$$
\varphi(E)=\int_{E} f d \nu
$$

is a measure. The only part of the definition of a measure that needs verifying is the countable additivity, by the last result, we have directly that

$$
\varphi\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} \varphi\left(E_{i}\right)
$$

when the $\left\{E_{i}\right\}$ are disjoint.

For the results above (and the results proved in lectures), we have considered only the integrals of non-negative measurable functions. We now extend them for general measurable functions, using the decomposition into positive and negative part functions $f=f^{+}-f^{-}$where both f^{+}and f^{-}are measurable and non-negative, and we have

$$
\int_{E} f d \nu=\int_{E} f^{+} d \nu-\int_{E} f^{-} d \nu
$$

Recall that we say that f is integrable if both f^{+}and f^{-}are integrable, and now denote the set of all functions integrable on E with respect to ν by $\mathcal{L}_{E}(\nu)$. From previous arguments we have that

$$
f \in \mathcal{L}_{E}(\nu) \Leftrightarrow f^{+} \text {and } f^{-} \in \mathcal{L}_{E}(\nu)
$$

Some results can be proved for the functions in this class.

LEMMA

If $\nu(E)=0$, then

$$
f \in \mathcal{L}_{E}(\nu) \quad \text { and } \quad \int_{E} f d \nu=0
$$

Proof. We have by definition

$$
\int_{E} f d \nu=\int_{E} f^{+} d \nu-\int_{E} f^{-} d \nu=0-0=0
$$

LEMMA

If $f \in \mathcal{L}_{E_{2}}(\nu)$ and $E_{1} \subset E_{2}$, then $f \in \mathcal{L}_{E_{1}}(\nu)$.
Proof. By a result from lectures

$$
\int_{E_{1}} f^{+} d \nu \leq \int_{E_{2}} f^{+} d \nu \quad \text { and } \quad \int_{E_{1}} f^{-} d \nu \leq \int_{E_{2}} f^{-} d \nu
$$

LEMMA

If $\left\{E_{n}\right\}$ is a sequence of disjoint sets with $\bigcup_{n=1}^{\infty} E_{n} \equiv E$, and $f \in \mathcal{L}_{E}(\nu)$, then

$$
\int_{E} f d \nu=\sum_{n=1}^{\infty}\left\{\int_{E_{n}} f d \nu\right\}
$$

Proof. The previous Lemma ensures that $f \in \mathcal{L}_{E_{n}}(\nu)$ as $E_{n} \subset E$ for all n. By using the result proved earlier, that if f is non-negative then

$$
\int_{E} f d \nu=\sum_{n=1}^{\infty}\left\{\int_{E_{n}} f d \nu\right\}
$$

we use the positive and negative part decompositions

$$
\begin{aligned}
\int_{E} f d \nu & =\int_{E} f^{+} d \nu-\int_{E} f^{-} d \nu=\sum_{n=1}^{\infty}\left\{\int_{E_{n}} f^{+} d \nu\right\}-\sum_{n=1}^{\infty}\left\{\int_{E_{n}} f^{+} d \nu\right\} \\
& =\sum_{n=1}^{\infty}\left[\int_{E_{n}} f^{+} d \nu-\int_{E_{n}} f^{-} d \nu\right] \\
& =\sum_{n=1}^{\infty}\left\{\int_{E_{n}}\left(f^{+}-f^{-}\right) d \nu\right\}=\sum_{n=1}^{\infty}\left\{\int_{E_{n}} f d \nu\right\}
\end{aligned}
$$

Corollary 11. If $f \in \mathcal{L}_{\Omega}(\nu)$, then the function φ defined on \mathcal{F} by

$$
\varphi(E)=\int_{E} f d \nu
$$

is additive.
Proof. As for previous result.

LEMMA

If $f=g$ a.e. on E, and if $g \in \mathcal{L}_{E}(\nu)$, then $f \in \mathcal{L}_{E}(\nu)$ and

$$
\int_{E} f d \nu=\int_{E} g d \nu
$$

Proof. Define $A \equiv\{\omega: \omega \in E, f(\omega)=g(\omega)\}$. Then $E \cap A^{\prime}$ has measure zero, and

$$
\int_{E} f^{+} d \nu=\int_{A} f^{+} d \nu=\int_{A} g^{+} d \nu=\int_{E} g^{+} d \nu
$$

and

$$
\int_{E} f^{-} d \nu=\int_{A} f^{-} d \nu=\int_{A} g^{-} d \nu=\int_{E} g^{-} d \nu
$$

Adding these equations, we have immediately that $f \in \mathcal{L}_{E}(\nu)$ and

$$
\int_{E} f d \nu=\int_{E} g d \nu
$$

LEMMA

If $f \in \mathcal{L}_{E}(\nu)$ and c is any real number, then $c f \in \mathcal{L}_{E}(\nu)$ and

$$
\int_{E}(c f) d \nu=c \int_{E} f d \nu
$$

Proof. Consider only the non-trivial case $c \neq 0$. Suppose first $c>0$, and let g be a non-negative function. For any simple function ψ, say

$$
\psi=\sum_{i=1}^{k} a_{i} I_{A_{i}}
$$

we have

$$
\psi \leq g \Leftrightarrow c \psi \leq c g .
$$

and

$$
\int_{E}(c \psi) d \nu=\sum_{i=1}^{k}\left(c a_{i}\right) \nu\left(E \cap A_{i}\right)=c \sum_{i=1}^{k} a_{i} \nu\left(E \cap A_{i}\right)=c \int_{E} \psi d \nu
$$

Therefore

$$
\int_{E}(c f) d \nu=c \int_{E} f d \nu
$$

by the supremum definition, and the result follows for $c>0$ using this result, and the decomposition $c f=c f^{+}-c f^{-}$. For $c<0$, write

$$
c f=(-c) f^{-}-(-c) f^{+}
$$

so that the result follows, as $-c>0$.

LEMMA

If $f, g \in \mathcal{L}_{E}(\nu)$, then $f+g \in \mathcal{L}_{E}(\nu)$ and

$$
\int_{E}(f+g) d \nu=\int_{E} f d \nu+\int_{E} g d \nu
$$

Proof. We prove the result two several stages. First suppose that f and g are non-negative, and let $\left\{\psi_{n}^{(f)}\right\}$ and $\left\{\psi_{n}^{(g)}\right\}$ be increasing sequences of simple functions with limits f and g respectively. Then $\left\{\psi_{n}^{(f)}+\psi_{n}^{(g)}\right\}$ has limit $f+g$, and as

$$
\int_{E}\left(\psi_{n}^{(f)}+\psi_{n}^{(g)}\right) d \nu=\int_{E} \psi_{n}^{(f)} d \nu+\int_{E} \psi_{n}^{(f)} d \nu
$$

(see this result by using the measure definition of the integral of a simple function), we have, taking the limit as $n \rightarrow \infty$,

$$
\int_{E}(f+g) d \nu=\int_{E} f d \nu+\int_{E} g d \nu
$$

Now consider the general case; define the following subsets of E

$$
\begin{aligned}
& E_{1} \equiv\{\omega: f(\omega) \geq 0, g(\omega) \geq 0\} \\
& E_{2} \equiv\{\omega: f(\omega)<0, g(\omega) \geq 0\} \\
& E_{3} \equiv\{\omega: f(\omega) \geq 0, g(\omega)<0,(f+g)(\omega) \geq 0\} \\
& E_{4} \equiv\{\omega: f(\omega)<0, g(\omega) \geq 0,(f+g)(\omega) \geq 0\} \\
& E_{5} \equiv\{\omega: f(\omega) \geq 0, g(\omega)<0,(f+g)(\omega)<0\} \\
& E_{6} \equiv\{\omega: f(\omega)<0, g(\omega) \geq 0,(f+g)(\omega)<0\}
\end{aligned}
$$

Then $E_{n}, n=1,2, \ldots, 6$ are disjoint, and $\bigcup_{n=1}^{6} E_{n} \equiv E$. By the Lemma ??, proving that

$$
\int_{E_{n}}(f+g) d \nu=\int_{E_{n}} f d \nu+\int_{E_{n}} g d \nu
$$

for each n is sufficient to prove the result. The proofs for each separate case are very similar; so consider for example set E_{3}. Then on E, the functions $f,-g$ and $f+g$ are non-negative, and threfore by part one of this proof,

$$
\int_{E_{3}} f d \nu=\int_{E_{3}}(-g) d \nu+\int_{E_{3}}(f+g) d \nu=-\int_{E_{3}} g d \nu+\int_{E_{3}}(f+g) d \nu
$$

and the result follows.

LEMMA

The function $f \in \mathcal{L}_{E}(\nu)$ if and only if $|f| \in \mathcal{L}_{E}(\nu)$. In this instance,

$$
\left|\int_{E} f d \nu\right| \leq \int_{E}|f| d \nu
$$

Proof. We have identified previously that f is integrable if the positive and negative part functions are integrable, and this is the case if and only if the function

$$
|f|=f^{+}+f^{-}
$$

is integrable. If this is the case, then

$$
\left|\int_{E} f d \nu\right|=\left|\int_{E} f^{+}-f^{-} d \nu\right| \leq\left|\int_{E} f^{+} d \nu\right|+\left|\int_{E} f^{-} d \nu\right|=\int_{E}|f| d \nu
$$

Corollary 12. If $g \in \mathcal{L}_{E}(\nu)$, and $|f| \leq g$, then $f \in \mathcal{L}_{E}(\nu)$

LEMMA

If $f, g \in \mathcal{L}_{E}(\nu)$, and $f \leq g$ a.e. on E, then

$$
\int_{E} f d \nu \leq \int_{E} g d \nu
$$

that is, the Lebesgue-Stieltjes Integral operator preserves ordering of functions.
Proof. We have $g-f \geq 0$, so the result follows from Integral Result (e) from lectures, and Lemma 3..
Corollary 13. If $v(E)<\infty$, and $m \leq f \leq M$ on E, for real values m and M, then by considering simple functions $\psi_{m}=m I_{E}$ and $\psi_{M}=M I_{E}$, for which $\psi_{m} \leq f \leq \psi_{M}$, we have

$$
m v(E) \leq \int_{E} f d \nu \leq M v(E)
$$

LEMMA

Suppose $f, g \in \mathcal{L}_{E}(\nu)$, and that for $A \subset E$,

$$
\int_{A} f d \nu \leq \int_{A} g d \nu
$$

Then $f \leq g$ a.e. on E.
Proof. Let $F_{1} \equiv\{\omega: \omega \in E, f(\omega) \geq g(\omega)\}$, so that $f-g \geq 0$ on F_{1}. Thus, by the assumption of the Lemma,

$$
\int_{F}(f-g) d \nu=0
$$

and hence by $f-g=0$ or $f=g$ a.e. on F_{1}, by Integral Result (f) from lectures.
Corollary 14. If $f, g \in \mathcal{L}_{E}(\nu)$ and if

$$
\int_{A} f d \nu=\int_{A} g d \nu
$$

for $A \subset E$, then $f=g$ a.e. on E.

Theorem 15. Lebesgue Dominated Convergence Theorem

If $\left\{f_{n}\right\}$ is a sequence of measurable functions, and if

$$
\lim _{n \rightarrow \infty} f_{n}=f \quad \text { almost everywhere }
$$

and $\left|f_{n}\right| \leq g$ for all n, for some $g \in \mathcal{L}_{E}(\nu)$, then

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \nu=\int_{E} f d \nu
$$

Proof. $\left\{f_{n}\right\}$ and f are measurable functions. By using Fatou's Lemma (Theorem 10) on non-negative sequence $\left\{g+f_{n}\right\}$

$$
\int_{E}(g+f) d \nu \leq \liminf _{n \rightarrow \infty}\left\{\int_{E}\left(g+f_{n}\right) d \nu\right\}
$$

so that

$$
\begin{equation*}
\int_{E} f d \nu \leq \liminf _{n \rightarrow \infty}\left\{\int_{E} f_{n} d \nu\right\} \tag{4}
\end{equation*}
$$

Similarly, by applying the result to $\left\{g-f_{n}\right\}$, we have that

$$
\int_{E}(g-f) d \nu \leq \liminf _{n \rightarrow \infty}\left\{\int_{E}\left(g-f_{n}\right) d \nu\right\} \quad \therefore \quad-\int_{E} f d \nu \leq \liminf _{n \rightarrow \infty}\left\{-\int_{E} f_{n} d \nu\right\}
$$

Multiplying through by -1 , we have by properties of limsup and liminf that

$$
\begin{equation*}
\int_{E} f d \nu \geq \limsup _{n \rightarrow \infty}\left\{\int_{E} f_{n} d \nu\right\} \tag{5}
\end{equation*}
$$

and hence combining (4) and (5), we have by definition

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \nu=\int_{E} f d \nu
$$

Corollary 16. If $\left\{f_{n}\right\}$ is a uniformly bounded sequence (bounded above and below by a pair of real constants) of measurable functions such that

$$
\lim _{n \rightarrow \infty} f_{n}=f \quad \text { almost everywhere }
$$

and if $v(E)<\infty$, then

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \nu=\int_{E} f d \nu
$$

LEBESGUE-STIELTJES INTEGRALS ON \mathbb{R}.

Rather than considering a general sample space Ω, we now consider the specific case when $\Omega \equiv \mathbb{R}$, with corresponding sigma-algebra which is the Borel sigma-algebra. In this case, the measure v will often be expressed in terms of (or be generated by) an increasing real function F on E. Let E be a set in the Borel sigma-algebra. Then for measurable function g, we can express the integral as

$$
\int_{E} g d \nu=\int_{E} g d F \quad \text { or } \quad \int_{E} g d \nu=\int_{E} g(x) d F(x)
$$

with special cases

$$
\int_{a}^{b} g d F=\int_{(a, b]} g d F \quad \text { and } \quad \int_{-\infty}^{\infty} g d F=\int_{\mathbb{R}} g d F
$$

