556: MATHEMATICAL STATISTICS I
INTRODUCTION TO MEASURE AND INTEGRATION

1. PROBABILITY AND MEASURE

In formal probability theory, a probability specification has three components:

e The Sample Space : a set {2 with elements w
e A Sigma-Algebra: a collection of subsets of (2, denoted &, say, that obeys the following properties
I Qe

II Closure under countable union:

0o
FEi,Es,...€ £ = UEkES
k=1

III Closure under complementation: £ € € = E' € £
e A Probability Measure : a real-valued set function P that obeys the general properties of a
measure with one additional requirement. A measure, denoted y, is a real-valued set function
such that for arbitrary sets £ and Ey, Eo, ...
I Non-negativity: u(E) > 0.
II Sub-additivity:
oo oo
1 (U Ek) <> u(E)
k=1 k=1
II Preservation under Limits: If £y C E, C ... is an increasing sequence of sets, we use the

notation
o0

nli_r)moO FE, = U FE;.
i=1
Then
i ( lim En> = lim wu(E,).
n—-aoo n—-auoo
Similarly, if £y D E» D ... is a decreasing sequence of sets, we use the notation

o
lim E, = ﬂ E;.

n—so00 !
=1

and again
,u( lim En> = lim wu(E,).

Examples of Measures: For sample space 2, and A C Q,

- Counting Measure : i(A) = |A] if A is a finite subset, ;1(A) = oo if A is an infinite subset.
— Lebesgue Measure : If Q = R, then, for a < b,

p((a,b)) = p((a, b)) = p(la, b)) = u([a,b]) = b - a.
Probability measures have the additional property that P(£2) = 1.
We use the terminology

e Measurable space to describe the pair (£2, &)
e Measure space to describe the triple (2, &, 1)
e Probability space to describe the triple (2, &, P)



2. MEASURABLE FUNCTIONS

DEFINITION Borel o-algebra
Let 2 = R, and C be the collection of all finite open intervals of R, that is

C={(a,b):a<beR.}
Then B = ¢(C) is the Borel o-algebra, and B € B are the Borel sets, which are of the form

(a,b),(a,b],|a,b),a,d] —o00<a<b< oo

DEFINITION Measurability

The real-valued function f defined with domain E C €, for measurable space (€2, ), is Borel
measurable with respect to £ if the inverse image of set B, defined as

fB)={weE: f(w)eB}

is an element of o-algebra &, for all Borel sets B of R (strictly, of the extended real number system R*,
including +o00 as elements). The following conditions are each necessary and sufficient for f to be
measurable

(@) f~!(A) € & for all open sets A C R*,

(b) f1([~o0,)) € € forall x € R¥,

(©) f1([~oc,2]) € Eforall x € R*,

(d) f1([z,00]) € € forall z € R*,

(e) f~1((z,00]) € & forall x € R*.
NOTES:

(i) The Borel o-algebra in R, B3, is the smallest (or minimal) o-algebra containing all open sets.

(ii) Itis possible to extend this definition to a general topological space (2 equipped with a topology,
that is, a collection, 7, of sets in Q that (I) 7 contains ) and 2, (II) 7 is closed under finite
intersection, and (III) if A is a sub-collection of 7, A C 7, and A1, As, Az, ... € A, then

[j A, eT.
=1

In this context, it is possible to define a general Borel o-algebra on ; the open sets are the
elements 71,75, T3, ... of the topology 7, and the Borel sets are the elements of the smallest o-
algebra generated by 7, o (7). However, we will not be studying general toplogical spaces; we
shall restrict attention to R, and thus refer to the Borel sets and the Borel o-algebra, meaning the
Borel sets/c-algebra defined on R.

(iii) Strictly, a function f is a Borel function if, for B € B, f ~1(B) € o (T); however, we will generally
consider measure spaces (€2, &) and say that f is a Borel function if it is Borel measurable, as
defined in the first paragraph above.



The measurability of functions is preserved under the following operations: if g; and g, are measurable
functions defined on £ C € into R*, and c is any real number, then all of the following composite and
other related functions are measurable

‘C

91+ 92,91+ ¢, 9192, ¢g1, 91/ 92, |91, 91 V g2, 1 A g2, 917, 97 -

where
® g1V g2(x) = max {g1(z), g2(x)}
* g1 Ag2(z) = min{gi(z), g2(x)}

o fT(z)=f(x)V0=max{f(z),0}
o [(z)=—f(2) VO =max{-f(z),0}
so that

f(z)= (=) - f(2) |f(@)] = fH(z) + f (2).
Furthermore, if {g,, } is a sequence of measurable functions, then the functions defined by
g(x) = sup gn(z) g(x) = inf gn(x)

are also measurable. Finally, the functions lim sup g, (z) and lim inf g,,(z) are also measurable.
n n

3. INTEGRATION

Let (€2, &, 1) be a measure space, and ¢ be a non-negative simple function, ¢ : 1 — R*, that is, for
w € Q,

k
W)=Y aila, (@)
=1

for real constants ay, ..., a; > 0 and measurable sets Ay, ..., Ay € &, forsome k = 1,2, 3, ..., where 14 (w)
is the indicator function for set A.

(I) The integral of ) with respect to 1 is denoted and defined by

k
[0 dn =3 ainta)
Q i=1

(II) Now suppose that f is a non-negative (Borel) measurable function, and let Sy be the set of all
non-negative simple functions defined by

Sr={Y:¢Yw) < f(w),Vw € Q} .
Then the integral of f with respect to p is defined by

[ 7 du=swp [ v au

Q veSy JQ

that is, the supremum (least upper bound) over all possible choices of k, ay,...,a;, € R* and
Aq, ..., Ay € € such that, for all w € Q,

k
Yw) =) aily (@) < f(W)
i=1
We refer to this as the Supremum Definition.
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(III) Finally, suppose that f is an arbitrary measurable function defined on 2. Then, using the max/min
functions

frw) =max{f(w),0} [ (w)=max{-fw),0} .~  flw)=F"(w)-f (W),
we define the integral of f with respect to p by

Afduzzy*du—lg‘dw

where the two integrals on the right hand side are integrals of non-negative functions, and thus
given by the supremum definition above.

NOTES
(i) In (III) above, it might be that at least one of the two integrals

/Qf+ dp /Qf dp.

is not finite. If precisely one is finite, we say that

/Qﬁduzoo.

and that the integral of f exists. If both are finite, we say that the integral of f exists and is finite,
and f is integrable with respect to p. If neither is finite, then we say that the integral of f does not

exist, and f is not-integrable.
[ rau= [ 1uf au
E E

(iii) All of the following pieces of notation are equivalent and used in the literature:

[ 1w /Q faw  [r@de [r@duw) [ e )

(iv) Previous results show that measurable functions have representations as limits of sequences of
simple functions. Other results show that measurability is preserved under composition, and
also under limit behaviour. Consider a non-negative measurable function f. Then

(i) For F C 2, we can also define

f= lim 4,
n—-a<o

for a sequence of non-negative simple functions v, %5, ... with 0 < ¢, (w) < f(w), for all n and
for all w € €. Then it can be shown
kn k

1= 1=

say, where

lim k, =k lim a,; = a; lim Iu,, =14,
n—-o0 n—-—:o0 n—-—o0 ’

lim wndu:/lim wndu:/fd,u

and the integral is preserved under the limit operation.

lim /wndu:/ lim ¢ndu:/fd,u

Thus



