556: Mathematical Statistics I

INTRODUCTION TO MEASURE AND INTEGRATION

1. PROBABILITY AND MEASURE

In formal probability theory, a probability specification has three components:

- The Sample Space : a set Ω with elements ω
- A Sigma-Algebra : a collection of subsets of Ω, denoted \mathcal{E}, say, that obeys the following properties

I $\Omega \in \mathcal{E}$

II Closure under countable union:

$$
E_{1}, E_{2}, \ldots \in \mathcal{E} \Longrightarrow \bigcup_{k=1}^{\infty} E_{k} \in \mathcal{E}
$$

III Closure under complementation: $E \in \mathcal{E} \Longrightarrow E^{\prime} \in \mathcal{E}$

- A Probability Measure : a real-valued set function \mathbb{P} that obeys the general properties of a measure with one additional requirement. A measure, denoted μ, is a real-valued set function such that for arbitrary sets E and E_{1}, E_{2}, \ldots

I Non-negativity: $\mu(E) \geq 0$.
II Sub-additivity:

$$
\mu\left(\bigcup_{k=1}^{\infty} E_{k}\right) \leq \sum_{k=1}^{\infty} \mu\left(E_{k}\right)
$$

III Preservation under Limits: If $E_{1} \subset E_{2} \subset \ldots$ is an increasing sequence of sets, we use the notation

$$
\lim _{n \longrightarrow \infty} E_{n} \equiv \bigcup_{i=1}^{\infty} E_{i} .
$$

Then

$$
\mu\left(\lim _{n \longrightarrow \infty} E_{n}\right)=\lim _{n \longrightarrow \infty} \mu\left(E_{n}\right) .
$$

Similarly, if $E_{1} \supset E_{2} \supset \ldots$ is a decreasing sequence of sets, we use the notation

$$
\lim _{n \longrightarrow \infty} E_{n} \equiv \bigcap_{i=1}^{\infty} E_{i} .
$$

and again

$$
\mu\left(\lim _{n \longrightarrow \infty} E_{n}\right)=\lim _{n \longrightarrow \infty} \mu\left(E_{n}\right) .
$$

Examples of Measures: For sample space Ω, and $A \subseteq \Omega$,

- Counting Measure : $\mu(A)=|A|$ if A is a finite subset, $\mu(A)=\infty$ if A is an infinite subset.
- Lebesgue Measure : If $\Omega \equiv \mathbb{R}$, then, for $a<b$,

$$
\mu((a, b))=\mu((a, b])=\mu([a, b))=\mu([a, b])=b-a .
$$

Probability measures have the additional property that $\mathbb{P}(\Omega)=1$.
We use the terminology

- Measurable space to describe the pair (Ω, \mathcal{E})
- Measure space to describe the triple $(\Omega, \mathcal{E}, \mu)$
- Probability space to describe the triple $(\Omega, \mathcal{E}, \mathbb{P})$

2. MEASURABLE FUNCTIONS

DEFINITION Borel σ-algebra

Let $\Omega \equiv \mathbb{R}$, and \mathcal{C} be the collection of all finite open intervals of \mathbb{R}, that is

$$
\mathcal{C} \equiv\{(a, b): a<b \in \mathbb{R} .\}
$$

Then $\mathcal{B} \equiv \sigma(\mathcal{C})$ is the Borel σ-algebra, and $B \in \mathcal{B}$ are the Borel sets, which are of the form

$$
(a, b),(a, b],[a, b),[a, b] \quad-\infty \leq a \leq b \leq \infty
$$

DEFINITION Measurability

The real-valued function f defined with domain $E \subset \Omega$, for measurable space (Ω, \mathcal{E}), is Borel measurable with respect to \mathcal{E} if the inverse image of set B, defined as

$$
f^{-1}(B) \equiv\{\omega \in E: f(\omega) \in B\}
$$

is an element of σ-algebra \mathcal{E}, for all Borel sets B of \mathbb{R} (strictly, of the extended real number system \mathbb{R}^{*}, including $\pm \infty$ as elements). The following conditions are each necessary and sufficient for f to be measurable
(a) $f^{-1}(A) \in \mathcal{E}$ for all open sets $A \subset \mathbb{R}^{*}$,
(b) $f^{-1}([-\infty, x)) \in \mathcal{E}$ for all $x \in \mathbb{R}^{*}$,
(c) $f^{-1}([-\infty, x]) \in \mathcal{E}$ for all $x \in \mathbb{R}^{*}$,
(d) $f^{-1}([x, \infty]) \in \mathcal{E}$ for all $x \in \mathbb{R}^{*}$,
(e) $f^{-1}((x, \infty]) \in \mathcal{E}$ for all $x \in \mathbb{R}^{*}$.

NOTES:

(i) The Borel σ-algebra in \mathbb{R}, \mathcal{B}, is the smallest (or minimal) σ-algebra containing all open sets.
(ii) It is possible to extend this definition to a general topological space Ω equipped with a topology, that is, a collection, \mathcal{T}, of sets in Ω that (I) \mathcal{T} contains \emptyset and Ω, (II) \mathcal{T} is closed under finite intersection, and (III) if \mathcal{A} is a sub-collection of $\mathcal{T}, \mathcal{A} \subset \mathcal{T}$, and $A_{1}, A_{2}, A_{3}, \ldots \in \mathcal{A}$, then

$$
\bigcup_{i=1}^{\infty} A_{i} \in \mathcal{T}
$$

In this context, it is possible to define a general Borel σ-algebra on Ω; the open sets are the elements $T_{1}, T_{2}, T_{3}, \ldots$ of the topology \mathcal{T}, and the Borel sets are the elements of the smallest σ algebra generated by $\mathcal{T}, \sigma(\mathcal{T})$. However, we will not be studying general toplogical spaces; we shall restrict attention to \mathbb{R}, and thus refer to the Borel sets and the Borel σ-algebra, meaning the Borel sets/ σ-algebra defined on \mathbb{R}.
(iii) Strictly, a function f is a Borel function if, for $B \in \mathcal{B}, f^{-1}(B) \in \sigma(\mathcal{T})$; however, we will generally consider measure spaces (Ω, \mathcal{E}) and say that f is a Borel function if it is Borel measurable, as defined in the first paragraph above.

The measurability of functions is preserved under the following operations: if g_{1} and g_{2} are measurable functions defined on $E \subset \Omega$ into \mathbb{R}^{*}, and c is any real number, then all of the following composite and other related functions are measurable

$$
g_{1}+g_{2}, g_{1}+c, g_{1} g_{2}, c g_{1}, g_{1} / g_{2},\left|g_{1}\right|^{c}, g_{1} \vee g_{2}, g_{1} \wedge g_{2}, g_{1}^{+}, g_{1}^{-}
$$

where

- $g_{1} \vee g_{2}(x)=\max \left\{g_{1}(x), g_{2}(x)\right\}$
- $g_{1} \wedge g_{2}(x)=\min \left\{g_{1}(x), g_{2}(x)\right\}$
- $f^{+}(x)=f(x) \vee 0=\max \{f(x), 0\}$
- $f^{-}(x)=-f(x) \vee 0=\max \{-f(x), 0\}$
so that

$$
f(x)=f^{+}(x)-f^{-}(x) \quad|f(x)|=f^{+}(x)+f^{-}(x)
$$

Furthermore, if $\left\{g_{n}\right\}$ is a sequence of measurable functions, then the functions defined by

$$
\bar{g}(x)=\sup _{n} g_{n}(x) \quad \underline{g}(x)=\inf _{n} g_{n}(x)
$$

are also measurable. Finally, the functions $\lim _{n} \sup _{n} g_{n}(x)$ and $\lim _{n} \inf g_{n}(x)$ are also measurable.

3. INTEGRATION

Let $(\Omega, \mathcal{E}, \mu)$ be a measure space, and ψ be a non-negative simple function, $\psi: \Omega \longrightarrow \mathbb{R}^{\star}$, that is, for $\omega \in \Omega$,

$$
\psi(\omega)=\sum_{i=1}^{k} a_{i} I_{A_{i}}(\omega)
$$

for real constants $a_{1}, \ldots, a_{k} \geq 0$ and measurable sets $A_{1}, \ldots, A_{k} \in \mathcal{E}$, for some $k=1,2,3, \ldots$, where $I_{A}(\omega)$ is the indicator function for set A.
(I) The integral of ψ with respect to μ is denoted and defined by

$$
\int_{\Omega} \psi d \mu=\sum_{i=1}^{k} a_{i} \mu\left(A_{i}\right)
$$

(II) Now suppose that f is a non-negative (Borel) measurable function, and let \mathcal{S}_{f} be the set of all non-negative simple functions defined by

$$
\mathcal{S}_{f} \equiv\{\psi: \psi(\omega) \leq f(\omega), \forall \omega \in \Omega\}
$$

Then the integral of f with respect to μ is defined by

$$
\int_{\Omega} f d \mu=\sup _{\psi \in \mathcal{S}_{f}} \int_{\Omega} \psi d \mu
$$

that is, the supremum (least upper bound) over all possible choices of $k, a_{1}, \ldots, a_{k} \in \mathbb{R}^{+}$and $A_{1}, \ldots, A_{k} \in \mathcal{E}$ such that, for all $\omega \in \Omega$,

$$
\psi(\omega)=\sum_{i=1}^{k} a_{i} I_{A_{i}}(\omega) \leq f(\omega)
$$

We refer to this as the Supremum Definition.
(III) Finally, suppose that f is an arbitrary measurable function defined on Ω. Then, using the \max / min functions

$$
f^{+}(\omega)=\max \{f(\omega), 0\} \quad f^{-}(\omega)=\max \{-f(\omega), 0\} \quad \therefore \quad f(\omega)=f^{+}(\omega)-f^{-}(\omega),
$$

we define the integral of f with respect to μ by

$$
\int_{\Omega} f d \mu=\int_{\Omega} f^{+} d \mu-\int_{\Omega} f^{-} d \mu .
$$

where the two integrals on the right hand side are integrals of non-negative functions, and thus given by the supremum definition above.

NOTES

(i) In (III) above, it might be that at least one of the two integrals

$$
\int_{\Omega} f^{+} d \mu \quad \int_{\Omega} f^{-} d \mu .
$$

is not finite. If precisely one is finite, we say that

$$
\int_{\Omega} f^{+} d \mu=\infty .
$$

and that the integral of f exists. If both are finite, we say that the integral of f exists and is finite, and f is integrable with respect to μ. If neither is finite, then we say that the integral of f does not exist, and f is not-integrable.
(ii) For $E \subset \Omega$, we can also define

$$
\int_{E} f d \mu=\int_{E} I_{E} f d \mu
$$

(iii) All of the following pieces of notation are equivalent and used in the literature:

$$
\int f d \mu \quad \int_{\Omega} f d \mu \quad \int f(\omega) d \mu \quad \int f(\omega) d \mu(\omega) \quad \int f(\omega) \mu(d \omega)
$$

(iv) Previous results show that measurable functions have representations as limits of sequences of simple functions. Other results show that measurability is preserved under composition, and also under limit behaviour. Consider a non-negative measurable function f. Then

$$
f=\lim _{n \longrightarrow \infty} \psi_{n}
$$

for a sequence of non-negative simple functions $\psi_{1}, \psi_{2}, \ldots$ with $0 \leq \psi_{n}(\omega) \leq f(\omega)$, for all n and for all $\omega \in \Omega$. Then it can be shown

$$
\lim _{n \longrightarrow \infty} \int \psi_{n} d \mu=\lim _{n \longrightarrow \infty} \sum_{i=1}^{k_{n}} a_{n, i} I_{A_{n, i}}=\sum_{i=1}^{k} a_{i} I_{A_{i}},
$$

say, where

$$
\lim _{n \longrightarrow \infty} k_{n}=k \quad \lim _{n \longrightarrow} a_{n, i}=a_{i} \quad \lim _{n \longrightarrow} I_{A_{n, i}}=I_{A_{i}} .
$$

Thus

$$
\lim _{n \longrightarrow \infty} \int \psi_{n} d \mu=\int \lim _{n \longrightarrow \infty} \psi_{n} d \mu=\int f d \mu
$$

and the integral is preserved under the limit operation.

$$
\lim _{n \longrightarrow \infty} \int \psi_{n} d \mu=\int \lim _{n \longrightarrow \infty} \psi_{n} d \mu=\int f d \mu
$$

