
556: MATHEMATICAL STATISTICS I

INTRODUCTION TO MEASURE AND INTEGRATION

1. PROBABILITY AND MEASURE

In formal probability theory, a probability specification has three components:

• The Sample Space : a set Ω with elements ω
• A Sigma-Algebra : a collection of subsets of Ω, denoted E , say, that obeys the following properties

I Ω ∈ E
II Closure under countable union:

E1, E2, . . . ∈ E =⇒
∞⋃

k=1

Ek ∈ E

III Closure under complementation: E ∈ E =⇒ E′ ∈ E
• A Probability Measure : a real-valued set function P that obeys the general properties of a

measure with one additional requirement. A measure, denoted µ, is a real-valued set function
such that for arbitrary sets E and E1, E2, . . .

I Non-negativity: µ(E) ≥ 0.
II Sub-additivity:

µ

( ∞⋃

k=1

Ek

)
≤

∞∑

k=1

µ(Ek)

III Preservation under Limits: If E1 ⊂ E2 ⊂ . . . is an increasing sequence of sets, we use the
notation

lim
n−→∞En ≡

∞⋃

i=1

Ei.

Then
µ

(
lim

n−→∞En

)
= lim

n−→∞µ(En).

Similarly, if E1 ⊃ E2 ⊃ . . . is a decreasing sequence of sets, we use the notation

lim
n−→∞En ≡

∞⋂

i=1

Ei.

and again
µ

(
lim

n−→∞En

)
= lim

n−→∞µ(En).

Examples of Measures: For sample space Ω, and A ⊆ Ω,

– Counting Measure : µ(A) = |A| if A is a finite subset, µ(A) = ∞ if A is an infinite subset.
– Lebesgue Measure : If Ω ≡ R, then, for a < b,

µ((a, b)) = µ((a, b]) = µ([a, b)) = µ([a, b]) = b− a.

Probability measures have the additional property that P(Ω) = 1.

We use the terminology

• Measurable space to describe the pair (Ω, E)
• Measure space to describe the triple (Ω, E , µ)
• Probability space to describe the triple (Ω, E ,P)
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2. MEASURABLE FUNCTIONS

DEFINITION Borel σ-algebra
Let Ω ≡ R, and C be the collection of all finite open intervals of R, that is

C ≡ {(a, b) : a < b ∈ R.}

Then B ≡ σ(C) is the Borel σ-algebra, and B ∈ B are the Borel sets, which are of the form

(a, b), (a, b], [a, b), [a, b] −∞ ≤ a ≤ b ≤ ∞.

DEFINITION Measurability

The real-valued function f defined with domain E ⊂ Ω, for measurable space (Ω, E), is Borel
measurable with respect to E if the inverse image of set B, defined as

f−1 (B) ≡ {ω ∈ E : f (ω) ∈ B}

is an element of σ-algebra E , for all Borel sets B of R (strictly, of the extended real number system R∗,
including ±∞ as elements). The following conditions are each necessary and sufficient for f to be
measurable

(a) f−1 (A) ∈ E for all open sets A ⊂ R∗,
(b) f−1 ([−∞, x)) ∈ E for all x ∈ R∗,
(c) f−1 ([−∞, x]) ∈ E for all x ∈ R∗,
(d) f−1 ([x,∞]) ∈ E for all x ∈ R∗,
(e) f−1 ((x,∞]) ∈ E for all x ∈ R∗.

NOTES:

(i) The Borel σ-algebra in R, B, is the smallest (or minimal) σ-algebra containing all open sets.

(ii) It is possible to extend this definition to a general topological space Ω equipped with a topology,
that is, a collection, T , of sets in Ω that (I) T contains ∅ and Ω, (II) T is closed under finite
intersection, and (III) if A is a sub-collection of T , A ⊂ T , and A1, A2, A3, ... ∈ A, then

∞⋃

i=1

Ai ∈ T .

In this context, it is possible to define a general Borel σ-algebra on Ω; the open sets are the
elements T1, T2, T3, ... of the topology T , and the Borel sets are the elements of the smallest σ-
algebra generated by T , σ (T ). However, we will not be studying general toplogical spaces; we
shall restrict attention to R, and thus refer to the Borel sets and the Borel σ-algebra, meaning the
Borel sets/σ-algebra defined on R.

(iii) Strictly, a function f is a Borel function if, for B ∈ B, f−1 (B) ∈ σ (T ); however, we will generally
consider measure spaces (Ω, E) and say that f is a Borel function if it is Borel measurable, as
defined in the first paragraph above.
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The measurability of functions is preserved under the following operations: if g1 and g2 are measurable
functions defined on E ⊂ Ω into R∗, and c is any real number, then all of the following composite and
other related functions are measurable

g1 + g2, g1 + c, g1g2, cg1, g1/g2, |g1|c , g1 ∨ g2, g1 ∧ g2, g
+
1 , g−1 .

where

• g1 ∨ g2(x) = max {g1(x), g2(x)}
• g1 ∧ g2(x) = min {g1(x), g2(x)}
• f+(x) = f(x) ∨ 0 = max {f(x), 0}
• f−(x) = −f(x) ∨ 0 = max {−f(x), 0}

so that
f(x) = f+(x)− f−(x) |f(x)| = f+(x) + f−(x).

Furthermore, if {gn} is a sequence of measurable functions, then the functions defined by

g(x) = sup
n

gn(x) g(x) = inf
n

gn(x)

are also measurable. Finally, the functions lim sup
n

gn(x) and lim inf
n

gn(x) are also measurable.

3. INTEGRATION

Let (Ω, E , µ) be a measure space, and ψ be a non-negative simple function, ψ : Ω −→ R?, that is, for
ω ∈ Ω,

ψ (ω) =
k∑

i=1

aiIAi (ω)

for real constants a1, ..., ak ≥ 0 and measurable sets A1, ..., Ak ∈ E , for some k = 1, 2, 3, ..., where IA(ω)
is the indicator function for set A.

(I) The integral of ψ with respect to µ is denoted and defined by
∫

Ω
ψ dµ =

k∑

i=1

aiµ(Ai).

(II) Now suppose that f is a non-negative (Borel) measurable function, and let Sf be the set of all
non-negative simple functions defined by

Sf ≡ {ψ : ψ(ω) ≤ f(ω), ∀ω ∈ Ω} .

Then the integral of f with respect to µ is defined by
∫

Ω
f dµ = sup

ψ∈Sf

∫

Ω
ψ dµ

that is, the supremum (least upper bound) over all possible choices of k, a1, ..., ak ∈ R+ and
A1, ..., Ak ∈ E such that, for all ω ∈ Ω,

ψ(ω) =
k∑

i=1

aiIAi(ω) ≤ f(ω)

We refer to this as the Supremum Definition.
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(III) Finally, suppose that f is an arbitrary measurable function defined on Ω. Then, using the max/min
functions

f+(ω) = max{f(ω), 0} f−(ω) = max{−f(ω), 0} ∴ f(ω) = f+(ω)− f−(ω),

we define the integral of f with respect to µ by
∫

Ω
f dµ =

∫

Ω
f+ dµ−

∫

Ω
f− dµ.

where the two integrals on the right hand side are integrals of non-negative functions, and thus
given by the supremum definition above.

NOTES

(i) In (III) above, it might be that at least one of the two integrals
∫

Ω
f+ dµ

∫

Ω
f− dµ.

is not finite. If precisely one is finite, we say that
∫

Ω
f+ dµ = ∞.

and that the integral of f exists. If both are finite, we say that the integral of f exists and is finite,
and f is integrable with respect to µ. If neither is finite, then we say that the integral of f does not
exist, and f is not-integrable.

(ii) For E ⊂ Ω, we can also define ∫

E
f dµ =

∫

E
IEf dµ

(iii) All of the following pieces of notation are equivalent and used in the literature:
∫

f dµ

∫

Ω
f dµ

∫
f(ω) dµ

∫
f(ω) dµ(ω)

∫
f(ω) µ(dω)

(iv) Previous results show that measurable functions have representations as limits of sequences of
simple functions. Other results show that measurability is preserved under composition, and
also under limit behaviour. Consider a non-negative measurable function f . Then

f = lim
n−→∞ψn

for a sequence of non-negative simple functions ψ1, ψ2, . . . with 0 ≤ ψn(ω) ≤ f(ω), for all n and
for all ω ∈ Ω. Then it can be shown

lim
n−→∞

∫
ψn dµ = lim

n−→∞

kn∑

i=1

an,iIAn,i =
k∑

i=1

aiIAi ,

say, where
lim

n−→∞ kn = k lim
n−→∞ an,i = ai lim

n−→∞ IAn,i = IAi .

Thus
lim

n−→∞

∫
ψn dµ =

∫
lim

n−→∞ψn dµ =
∫

f dµ

and the integral is preserved under the limit operation.

lim
n−→∞

∫
ψn dµ =

∫
lim

n−→∞ψn dµ =
∫

f dµ
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