MATH 556: PROBABILITY PRIMER

1 DEFINITIONS, TERMINOLOGY, NOTATION

1.1 EVENTS AND THE SAMPLE SPACE

Definition 1.1 An experiment is a one-off or repeatable process or procedure for which

(a) there is a well-defined set of *possible* outcomes

(b) the *actual* outcome is not known with certainty.

Definition 1.2 A sample outcome, ω , is precisely one of the possible outcomes of an experiment.

Definition 1.3 The **sample space**, Ω , of an experiment is the set of all possible outcomes.

NOTE: Ω is a set in the mathematical sense, so set theory notation can be used. For example, if the sample outcomes are denoted $\omega_1, ..., \omega_k$, say, then

$$\Omega = \{\omega_1, ..., \omega_k\} = \{\omega_i : i = 1, ..., k\},\$$

and $\omega_i \in \Omega$ for i = 1, ..., k.

The sample space of an experiment can be

- a FINITE list of sample outcomes, $\{\omega_1, ..., \omega_k\}$
- an INFINITE list of sample outcomes, $\{\omega_1, \omega_2, ...\}$
- an INTERVAL or REGION of a real space, $\{\omega : \omega \in A \subseteq \mathbb{R}^d\}$

Definition 1.4 An <u>event</u>, E, is a designated collection of sample outcomes. Event E <u>occurs</u> if the actual outcome of the experiment is one of this collection.

Special Cases of Events

The event corresponding to collection of *all* sample outcomes is Ω .

The event corresponding to a collection of *none* of the sample outcomes is denoted \emptyset .

i.e. The sets \emptyset and Ω are also events, termed the **impossible** and the **certain** event respectively, and for any event $E, E \subseteq \Omega$.

1.1.1 OPERATIONS IN SET THEORY

Set theory operations can be used to manipulate events in probability theory. Consider events $E, F \subseteq \Omega$. Then the three basic operations are

UNION	$E \cup F$	" E or F or both occur"
INTERSECTION	$E\cap F$	"both E and F occur"
COMPLEMENT	E'	" E does not occur"

Properties of Union/Intersection operators

Consider events $E, F, G \subseteq \Omega$.

COMMUTATIVITY	$E \cup F = F \cup E$ $E \cap F = F \cap E$
ASSOCIATIVITY	$E \cup (F \cup G) = (E \cup F) \cup G$ $E \cap (F \cap G) = (E \cap F) \cap G$
DISTRIBUTIVITY	$E \cup (F \cap G) = (E \cup F) \cap (E \cup G)$ $E \cap (F \cup G) = (E \cap F) \cup (E \cap G)$
DE MORGAN'S LAWS	$\begin{array}{l} \left(E\cup F\right)'=E'\cap F'\\ \left(E\cap F\right)'=E'\cup F' \end{array}$

Union and intersection are *binary* operators, that is, they take only two arguments, and thus the bracketing in the above equations is necessary. For $k \ge 2$ events, $E_1, E_2, ..., E_k$,

$$\bigcup_{i=1}^{k} E_i = E_1 \cup \ldots \cup E_k \quad \text{and} \quad \bigcap_{i=1}^{k} E_i = E_1 \cap \ldots \cap E_k$$

for the union and intersection of $E_1, E_2, ..., E_k$, with a further extension for *k* infinite.

1.1.2 MUTUALLY EXCLUSIVE EVENTS AND PARTITIONS

Definition 1.5 Events *E* and *F* are **mutually exclusive** if $E \cap F = \emptyset$, that is, if events *E* and *F* cannot both occur. If the sets of sample outcomes represented by *E* and *F* are **disjoint** (have no common element), then *E* and *F* are mutually exclusive.

Definition 1.6 Events $E_1, ..., E_k \subseteq \Omega$ form a **partition** of event $F \subseteq \Omega$ if (a) $E_i \cap E_j = \emptyset$ for $i \neq j, i, j = 1, ..., k$ (b) $\bigcup_{i=1}^k E_i = F$.

so that each element of the collection of sample outcomes corresponding to event F is in *one and only one* of the collections corresponding to events $E_1, ... E_k$.

In Figure 1, we have $\Omega = \bigcup_{i=1}^{6} E_i$. In Figure 2, we have $F = \bigcup_{i=1}^{6} (F \cap E_i)$, but, for example, $F \cap E_6 = \emptyset$.

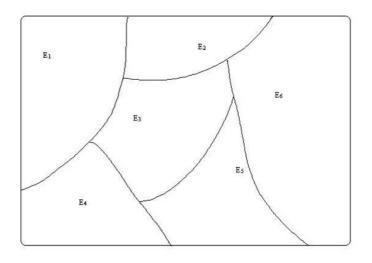


Figure 1: Partition of Ω

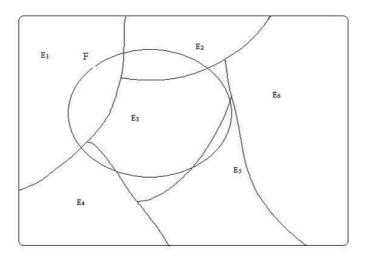


Figure 2: Partition of $F \subset \Omega$

1.2 THE PROBABILITY FUNCTION

Definition 1.7 For an event $E \subseteq \Omega$, the **probability that** *E* **occurs** is written *P*(*E*).

Interpretation : P(.) is a *set-function* that assigns "weight" to collections of possible outcomes of an experiment. There are many ways to think about precisely how this assignment is achieved;

CLASSICAL : "Consider equally likely sample outcomes ..."

FREQUENTIST : "Consider long-run relative frequencies ..."

SUBJECTIVE : "Consider personal degree of belief ..."

or merely think of P(.) as a set-function.

1.3 PROPERTIES OF P(.): THE AXIOMS OF PROBABILITY

Consider sample space Ω . Then probability function P(.) satisfies the following properties:

<u>AXIOM 1</u> Let $E \subseteq \Omega$. Then $0 \le P(E) \le 1$.

<u>AXIOM 2</u> $P(\Omega) = 1.$

<u>AXIOM 3</u> If $E, F \subseteq \Omega$, with $E \cap F = \emptyset$, then $P(E \cup F) = P(E) + P(F)$.

1.3.1 EXTENSIONS : ALGEBRAS AND SIGMA ALGEBRAS

Axiom 3 can be re-stated if we can consider an *algebra* A of subsets of Ω . A (countable) collection of subsets, A, of sample space Ω , say $A = \{A_1, A_2, ...\}$, is an *algebra* if

- I $\Omega \in \mathcal{A}$
- II $A_1, A_2 \in \mathcal{A} \Longrightarrow A_1 \cup A_2 \in \mathcal{A}$
- III $A \in \mathcal{A} \Longrightarrow A' \in \mathcal{A}$

NOTE : An algebra is a set of sets (events) with certain properties; in particular it is *closed* under a **finite** number of union operations (II), that is if $A_1, ..., A_k \in A$, then

$$\bigcup_{i=1}^k A_i \in \mathcal{A}.$$

If \mathcal{A} is an algebra of subsets of Ω , then (i) $\emptyset \in \mathcal{A}$ (ii) If $A_1, A_2 \in \mathcal{A}$, then

$$A_1', A_2' \in \mathcal{A} \implies A_1' \cup A_2' \in \mathcal{A} \implies (A_1' \cup A_2')' \in \mathcal{A} \implies A_1 \cap A_2 \in \mathcal{A}$$

so A is also closed under intersection.

Extension: A *sigma-algebra* (σ *-algebra*) is an algebra that is closed under *countable union*, that is, if $A_1, ..., A_k, ... \in A$, then

$$\bigcup_{k=1}^{\infty} A_k \in \mathcal{A}.$$

Now, if events $A_1, A_2, ...$ are disjoint elements of A, then we can replace Axiom 3 by requiring that, for $n \ge 1$,

AXIOM 3*
$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i).$$

Furthermore, if A is a σ -algebra, then Axiom 3^{*} can be replaced by

AXIOM 3[†]
$$P\left(\bigcup_{i=1}^{\infty}A_i\right) = \sum_{i=1}^{\infty}P(A_i).$$

Thus, if A is a σ -algebra, then

 $AXIOM 3^{\dagger} \implies AXIOM 3^{*} \implies AXIOM 3$

 $\begin{array}{rcl} \text{COUNTABLE ADDITIVITY} & \Longrightarrow & \text{FINITE ADDITIVITY} & \Longrightarrow & \text{ADDITIVITY} \end{array}$

1.3.2 COROLLARIES TO THE PROBABILITY AXIOMS

For events $E, F \subseteq \Omega$

- 1. P(E') = 1 P(E), and hence $P(\emptyset) = 0$.
- 2. If $E \subseteq F$, then $P(E) \leq P(F)$.
- 3. In general, $P(E \cup F) = P(E) + P(F) P(E \cap F)$.
- 4. $P(E \cap F') = P(E) P(E \cap F)$
- 5. $P(E \cup F) \le P(E) + P(F)$.
- 6. $P(E \cap F) \ge P(E) + P(F) 1$.

NOTE : The **general addition rule** for probabilities and Boole's Inequality extend to more than two events. Let $E_1, ..., E_n$ be events in Ω . Then

$$P\left(\bigcup_{i=1}^{n} E_{i}\right) = \sum_{i} P(E_{i}) - \sum_{i < j} P(E_{i} \cap E_{j}) + \sum_{i < j < k} P(E_{i} \cap E_{j} \cap E_{k}) - \dots + (-1)^{n} P\left(\bigcap_{i=1}^{n} E_{i}\right)$$

and

$$P\left(\bigcup_{i=1}^{n} E_i\right) \le \sum_{i=1}^{n} P(E_i).$$

To prove these results, construct the events $F_1 = E_1$ and

$$F_i = E_i \cap \left(\bigcup_{k=1}^{i-1} E_k\right)'$$

for i = 2, 3, ..., n. Then $F_1, F_2, ..., F_n$ are disjoint, and $\bigcup_{i=1}^n E_i = \bigcup_{i=1}^n F_i$, so $P\left(\left| \begin{array}{c} n \\ 1 \end{array} \right|_{E_i} \right) = P\left(\left| \begin{array}{c} n \\ 1 \end{array} \right|_{E_i} \right) = \sum_{i=1}^n P(E_i)$

$$P\left(\bigcup_{i=1} E_i\right) = P\left(\bigcup_{i=1} F_i\right) = \sum_{i=1} P(F_i).$$

Now, by the corollary above

$$P(F_i) = P(E_i) - P\left(E_i \cap \left(\bigcup_{k=1}^{i-1} E_k\right)\right) \qquad i = 2, 3, ..., n.$$
$$= P(E_i) - P\left(\bigcup_{k=1}^{i-1} (E_i \cap E_k)\right)$$

and the result follows by recursive expansion of the second term for i = 2, 3, ...n.

NOTE : We will often deal with both probabilities of single events, and also probabilities for intersection events. For convenience, and to reflect connections with distribution theory, we will use the following terminology; for events *E* and *F*

P(E) is the **marginal** probability of E

 $P(E \cap F)$ is the **joint** probability of *E* and *F*

1.4 CONDITIONAL PROBABILITY

Definition 1.8 For events $E, F \subseteq \Omega$ the **conditional probability** that F occurs **given** that E occurs is written P(F|E), and is defined by

$$P(F|E) = \frac{P(E \cap F)}{P(E)}$$

if P(E) > 0.

NOTE: $P(E \cap F) = P(E)P(F|E)$, and in general, for events $E_1, ..., E_k$,

$$P\left(\bigcap_{i=1}^{k} E_{i}\right) = P(E_{1})P(E_{2}|E_{1})P(E_{2}|E_{1} \cap E_{2})...P(E_{k}|E_{1} \cap E_{2} \cap ... \cap E_{k-1}).$$

This result is known as the CHAIN or MULTIPLICATION RULE.

Definition 1.9 Events *E* and *F* are **independent** if

$$P(E|F) = P(E)$$
 so that $P(E \cap F) = P(E)P(F)$

Extension : Events $E_1, ..., E_k$ are independent if, for **every** subset of events of size $l \le k$, indexed by $\{i_1, ..., i_l\}$, say,

$$P\left(\bigcap_{j=1}^{l} E_{i_j}\right) = \prod_{j=1}^{l} P(E_{i_j}).$$

1.5 THE THEOREM OF TOTAL PROBABILITY

THEOREM

Let $E_1, ..., E_k$ be a partition of Ω , and let $F \subseteq \Omega$. Then

$$P(F) = \sum_{i=1}^{k} P(F|E_i) P(E_i)$$

PROOF

 $E_1, ..., E_k$ form a partition of Ω , and $F \subseteq \Omega$, so

$$F = (F \cap E_1) \cup \dots \cup (F \cap E_k)$$
$$\implies P(F) = \sum_{i=1}^k P(F \cap E_i) = \sum_{i=1}^k P(F|E_i) P(E_i)$$

(by AXIOM 3^{*}, as $E_i \cap E_j = \emptyset$).

Extension: If we assume that Axiom 3^{\dagger} holds, that is, that P is countably additive, then the theorem still holds, that is, if $E_1, E_2, ...$ are a partition of Ω , and $F \subseteq \Omega$, then

$$P(F) = \sum_{i=1}^{\infty} P(F \cap E_i) = \sum_{i=1}^{\infty} P(F|E_i) P(E_i)$$

if $P(E_i) > 0$ for all *i*.

1.6 BAYES THEOREM

THEOREM

Suppose $E, F \subseteq \Omega$, with P(E), P(F) > 0. Then

$$P(E|F) = \frac{P(F|E)P(E)}{P(F)}$$

PROOF

$$P(E|F)P(F) = P(E \cap F) = P(F|E)P(E)$$
, so $P(E|F)P(F) = P(F|E)P(E)$.

Extension: If $E_1, ..., E_k$ are disjoint, with $P(E_i) > 0$ for i = 1, ..., k, and form a partition of $F \subseteq \Omega$, then

$$P(E_i|F) = \frac{P(F|E_i)P(E_i)}{\sum_{i=1}^{k} P(F|E_i)P(E_i)}$$

The extension to the countably additive (infinite) case also holds.

NOTE: in general, $P(E|F) \neq P(F|E)$

1.7 COUNTING TECHNIQUES

Suppose that an experiment has N equally likely sample outcomes. If event E corresponds to a collection of sample outcomes of size n(E), then

$$P(E) = \frac{n(E)}{N}$$

so it is necessary to be able to evaluate n(E) and N in practice.

1.7.1 THE MULTIPLICATION PRINCIPLE

If operations labelled 1, ..., r can be carried out in $n_1, ..., n_r$ ways respectively, then there are

$$\prod_{i=1}^r n_i = n_1 \dots n_r$$

ways of carrying out the r operations in total.

Example 1.1 If each of r trials of an experiment has N possible outcomes, then there are N^r possible sequences of outcomes in total. For example:

(i) If a multiple choice exam has 20 questions, each of which has 5 possible answers, then there are 5^{20} different ways of completing the exam.

(ii) There are 2^m subsets of m elements (as each element is either in the subset, or **not** in the subset, which is equivalent to m trials each with two outcomes).

1.7.2 SAMPLING FROM A FINITE POPULATION

Consider a collection of N items, and a sequence of operations labelled 1, ..., r such that the *i*th operation involves **selecting** one of the items remaining after the first i - 1 operations have been carried out. Let n_i denote the number of ways of carrying out the *i*th operation, for i = 1, ..., r. Then there are two distinct cases;

(a) **Sampling with replacement :** an item is returned to the collection after selection. Then $n_i = N$ for all *i*, and there are N^r ways of carrying out the *r* operations.

(b) **Sampling without replacement :** an item is not returned to the collection after selected. Then $n_i = N - i + 1$, and there are N(N - 1)...(N - r + 1) ways of carrying out the *r* operations. e.g. Consider selecting 5 cards from 52. Then

- (a) leads to 52^5 possible selections, whereas
- (b) leads to 52.51.50.49.48 possible selections

NOTE : The **order** in which the operations are carried out may be important e.g. in a raffle with three prizes and 100 tickets, the draw {45, 19, 76} is different from {19, 76, 45}.

NOTE : The items may be **distinct** (unique in the collection), or **indistinct** (of a unique type in the collection, but not unique individually).

e.g. The numbered balls in the National Lottery, or individual playing cards, are **distinct**. However balls in the lottery are regarded as "WINNING" or "NOT WINNING", or playing cards are regarded in terms of their suit only, are **indistinct**.

1.7.3 PERMUTATIONS AND COMBINATIONS

Definition 1.10 A **permutation** is an *ordered* arrangement of a set of items. A **<u>combination</u>** is an *unordered* arrangement of a set of items.

<u>RESULT 1</u> The number of permutations of *n* distinct items is n! = n(n-1)...1.

<u>RESULT 2</u> The number of permutations of r from n distinct items is

$$P_r^n = \frac{n!}{(n-r)!} = n(n-1)...(n-r+1)$$
 (by the Multiplication Principle).

If the order in which items are selected is not important, then

<u>RESULT 3</u> The number of combinations of r from n distinct items is

$$C_r^n = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$
 (as $P_r^n = r!C_r^n$).

-recall the Binomial Theorem, namely

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^i b^{n-i}$$

Then the number of subsets of *m* items can be calculated as follows; for each $0 \le j \le m$, choose a subset of *j* items from *m*. Then

Total number of subsets
$$=\sum_{j=0}^{m} \binom{m}{j} = (1+1)^m = 2^m.$$

If the items are **indistinct**, but each is of a unique type, say Type I, ..., Type κ say, (the so-called **Urn Model**) then

<u>RESULT 4</u> The number of distinguishable permutations of *n* indistinct objects, comprising n_i items of type *i* for $i = 1, ..., \kappa$ is

$$\frac{n!}{n_1!n_2!\dots n_\kappa!}$$

Special Case : if $\kappa = 2$, then the number of distinguishable permutations of the n_1 objects of type I, and $n_2 = n - n_1$ objects of type II is

$$C_{n_2}^n = \frac{n!}{n_1!(n-n_1)!}$$

Also, there are C_r^n ways of partitioning *n* **distinct** items into two "cells", with *r* in one cell and n - r in the other.

1.7.4 PROBABILITY CALCULATIONS

Recall that if an experiment has N equally likely sample outcomes, and event E corresponds to a collection of sample outcomes of size n(E), then

$$P(E) = \frac{n(E)}{N}$$

Example 1.2 A True/False exam has 20 questions. Let E = "16 answers correct at random". Then

$$P(E) = \frac{\text{Number of ways of getting 16 out of 20 correct}}{\text{Total number of ways of answering 20 questions}} = \frac{\binom{20}{16}}{2^{20}} = 0.0046$$

Example 1.3 *Sampling without replacement*. Consider an Urn Model with 10 Type I objects and 20 Type II objects, and an experiment involving sampling five objects without replacement. Let E="precisely 2 Type I objects selected" We need to calculate N and n(E) in order to calculate P(E). In this case N is the number of ways of choosing 5 from 30 items, and hence

$$N = \begin{pmatrix} 30\\5 \end{pmatrix}$$

To calculate n(E), we think of E occurring by first choosing 2 Type I objects from 10, and then choosing 3 Type II objects from 20, and hence, by the multiplication rule,

$$n(E) = \binom{10}{2} \binom{20}{3}$$

Therefore

$$P(E) = \frac{\binom{10}{2}\binom{20}{3}}{\binom{30}{5}} = 0.360$$

This result can be obtained using a conditional probability argument; consider event $F \subseteq E$, where F = "sequence of objects 11222 obtained". Then

$$F = \bigcap_{i=1}^{5} F_{ij}$$

where F_{ij} = "type *j* object obtained on draw *i*" *i* = 1, ..., 5, *j* = 1, 2. Then

$$P(F) = P(F_{11})P(F_{21}|F_{11})\dots P(F_{52}|F_{11}, F_{21}, F_{32}, F_{42}) = \frac{10}{30} \frac{9}{29} \frac{20}{28} \frac{19}{27} \frac{18}{26}$$

Now consider event *G* where G = "sequence of objects 12122 obtained". Then

$$P(G) = \frac{10}{30} \frac{20}{29} \frac{9}{28} \frac{19}{27} \frac{18}{26}$$

i.e. P(G) = P(F). In fact, **any** sequence containing two Type I and three Type II objects has this probability, and there are $\binom{5}{2}$ such sequences. Thus, as all such sequences are mutually exclusive,

$$P(E) = {\binom{5}{2}} \frac{10}{30} \frac{9}{29} \frac{20}{28} \frac{19}{27} \frac{18}{26} = \frac{{\binom{10}{2}} {\binom{20}{3}}}{{\binom{30}{5}}}$$

as before.

Example 1.4 *Sampling with replacement.* Consider an Urn Model with 10 Type I objects and 20 Type II objects, and an experiment involving sampling five objects with replacement. Let E = "precisely 2 Type I objects selected". Again, we need to calculate N and n(E) in order to calculate P(E). In this case N is the number of ways of choosing 5 from 30 items with replacement, and hence

 $N = 30^{5}$

To calculate n(E), we think of *E* occurring by first choosing 2 Type I objects from 10, and 3 Type II objects from 20 in any order. Consider such sequences of selection

 Sequence
 Number of ways

 11222
 10.10.20.20.20

 12122
 10.20.10.20.20

etc., and thus a sequence with 2 Type I objects and 3 Type II objects can be obtained in $10^2 20^3$ ways. As before there are $\binom{5}{2}$ such sequences, and thus

$$P(E) = \frac{\binom{5}{2}10^2 20^3}{30^5} = 0.329.$$

Again, this result can be obtained using a conditional probability argument; consider event $F \subseteq E$, where F = "sequence of objects 11222 obtained". Then

$$P(F) = \left(\frac{10}{30}\right)^2 \left(\frac{20}{30}\right)^3$$

as the results of the draws are **independent**. This result is true for any sequence containing two Type I and three Type II objects, and there are $\binom{5}{2}$ such sequences that are mutually exclusive, so

$$P(E) = \binom{5}{2} \left(\frac{10}{30}\right)^2 \left(\frac{20}{30}\right)^3$$