556: MATHEMATICAL Statistics I

INEQUALTIES

1. CONCENTRATION INEQUALITIES

LEMMA (CHEBYCHEV'S LEMMA)

If X is a random variable, then for non-negative function h, and $c>0$,

$$
P[h(X) \geq c] \leq \frac{E_{f_{X}}[h(X)]}{c}
$$

Proof. (continuous case) : Suppose that X has density function f_{X} which is positive for $x \in \mathbb{X}$. Let $\mathcal{A}=\{x \in \mathbb{X}: h(x) \geq c\} \subseteq X$. Then, as $h(x) \geq c$ on A,

$$
\begin{aligned}
E_{f_{X}}[h(X)]=\int h(x) f_{X}(x) d x & =\int_{\mathcal{A}} h(x) f_{X}(x) d x+\int_{\mathcal{A}^{\prime}} h(x) f_{X}(x) d x \\
& \geq \int_{\mathcal{A}} h(x) f_{X}(x) d x \\
& \geq \int_{\mathcal{A}} c f_{X}(x) d x \\
& =c P[X \in \mathcal{A}]=c P[h(X) \geq c]
\end{aligned}
$$

and the result follows.

- SPECIAL CASE I - THE MARKOV INEQUALITY

If $h(x)=|x|^{r}$ for $r>0$, so

$$
P\left[|X|^{r} \geq c\right] \leq \frac{E_{f_{X}}\left[|X|^{r}\right]}{c}
$$

Alternately stated (by Casella and Berger) as follows: If $P[Y \geq 0]=1$ and $P[Y=0]<1$, then for any $r>0$

$$
P[Y \geq r] \leq \frac{E_{f_{X}}[Y]}{r}
$$

with equality if and only if

$$
P[Y=r]=p=1-P[Y=0]
$$

for some $0<p \leq 1$.

- SPECIAL CASE II - THE CHEBYCHEV INEQUALITY

Suppose that X is a random variable with expectation μ and variance σ^{2}. Then $h(x)=(x-\mu)^{2}$ and $c=k^{2} \sigma^{2}$, for $k>0$,

$$
P\left[(X-\mu)^{2} \geq k^{2} \sigma^{2}\right] \leq 1 / k^{2}
$$

or equivalently

$$
P[|X-\mu| \geq k \sigma] \leq 1 / k^{2} .
$$

Setting $\epsilon=k \sigma$ gives

$$
P[|X-\mu| \geq \epsilon] \leq \sigma^{2} / \epsilon^{2}
$$

or equivalently

$$
P[|X-\mu|<\epsilon] \geq 1-\sigma^{2} / \epsilon^{2} .
$$

CHERNOFF BOUNDS

THEOREM

Suppose that X_{1}, \ldots, X_{n} are independent binary trials (known as "Poisson trials") such that

$$
P\left[X_{i}=x\right]=\left\{\begin{array}{cc}
1-p_{i} & x=0 \\
p_{i} & x=1
\end{array}\right.
$$

and zero otherwise. Let $X=\left(X_{1}+\cdots+X_{n}\right)$, so that

$$
E_{f_{X}}[X]=\sum_{i=1}^{n} p_{i}=\mu
$$

say. Then for $d>0$

$$
P[X \geq(1+d) \mu] \leq \exp \left\{\frac{e^{d}}{(1+d)^{(1+d)}}\right\}^{\mu}
$$

and for $0 \leq d \leq 1$

$$
P[X \geq(1+d) \mu] \leq \exp \left\{-\mu d^{2} / 3\right\}
$$

Proof. Let $a>0$. Then

$$
\begin{aligned}
P[X \geq(1+d) \mu] & =P[\exp \{a X\} \geq \exp \{a(1+d) \mu\}] \\
& \leq E_{f_{X}}[\exp \{a X\}] \exp \{-a(1+d) \mu\}
\end{aligned}
$$

using the previous Chebychev Lemma with $h(x)=e^{a x}$ and $c=e^{a(1+d) \mu}$. But

$$
E_{f_{X}}[\exp \{a X\}]=\prod_{i=1}^{n} E_{f_{X_{i}}}\left[\exp \left\{a X_{i}\right\}\right]=\prod_{i=1}^{n}\left[p_{i} e^{a}+\left(1-p_{i}\right)\right]=\prod_{i=1}^{n}\left[1+p_{i}\left(e^{a}-1\right)\right]
$$

Now for $y>0,1+y<e^{y}$, so setting $y=p_{i}\left(e^{a}-1\right)$, we conclude that

$$
E_{f_{X}}[\exp \{a X\}]<\prod_{i=1}^{n} \exp \left\{p_{i}\left(e^{a}-1\right)\right\}=\exp \left\{\sum_{i=1}^{n} p_{i}\left(e^{a}-1\right)\right\}=\exp \left\{\mu\left(e^{a}-1\right)\right\}
$$

Hence

$$
P[X \geq(1+d) \mu] \leq \exp \left\{\mu\left(e^{a}-1\right)\right\} \exp \{-a(1+d) \mu\}
$$

and setting $a=\log (1+d)$ yields

$$
P[X \geq(1+d) \mu] \leq\left\{\frac{e^{\mu d}}{(1+d)^{\mu(1+d)}}\right\}=\left\{\frac{e^{d}}{(1+d)^{(1+d)}}\right\}^{\mu}
$$

Now, for $0 \leq d \leq 1$, the right hand side is bounded above by $\exp \left\{-\mu d^{2} / 3\right\}$. To see this, consider (after taking logs),

$$
f(d)=d-(1+d) \log (1+d)+d^{2} / 3
$$

We need to show that $f(d)$ is bounded above by zero for $0 \leq d \leq 1$. Now, clearly $f(0)=0$, and taking derivatives twice we have

$$
\begin{aligned}
f^{(1)}(d) & =-\log (1+d)+2 d / 3 \\
f^{(2)}(d) & =-\frac{1}{(1+d)}+2 / 3
\end{aligned}
$$

so $f^{(1)}(0)=0$ and $f^{(1)}(d)$ is negative for all $0 \leq d \leq 1$. Thus $f(d)$ must be negative for all d in this range.

NOTE: In fact, for any integer $k \geq 2$, the bound for $0 \leq d \leq 1$

$$
P[X \geq(1+d) \mu] \leq \exp \left\{-\mu d^{k} / 3\right\}
$$

holds, but the bound is tighter if k is smaller. The bound does not hold if $k=1$. To see this, consider again

$$
f_{k}(d)=d-(1+d) \log (1+d)+d^{k} / 3
$$

and

$$
\begin{aligned}
f_{k}^{(1)}(d) & =-\log (1+d)+k d^{k-1} / 3 \\
f_{k}^{(2)}(d) & =-\frac{1}{(1+d)}+k(k-1) d^{k-2} / 3
\end{aligned}
$$

Now $f_{k}(0)=0$ and $f_{k}(1)=1-2 \log 2+1 / 3<0$, and as there is only one solution of

$$
\log (1+x)=k x^{k-1} / 3
$$

on $0<x<1$, there is precisely one turning point of $f(d)$ on this interval. Thus $f_{k}(d)$ never becomes positive on $(0,1)$.

See also the graph below of the function $f_{k}(d)$ for $k=1,2,3,4,5$.

LEMMA (A CHERNOFF BOUND USING MGFS)

If X is a random variable, with $\operatorname{mgf} M_{X}(t)$ defined on a neighbourhood $(-h, h)$ of zero. Then

$$
P[X \geq a] \leq e^{-a t} M_{X}(t) \quad \text { for } 0<t<h
$$

Proof. Using the Chebychev Lemma with $h(x)=e^{t x}$ and $c=e^{a t}$, for $t>0$,

$$
P[X \geq a]=P[t X \geq a t]=P[\exp \{t X\} \geq \exp \{a t\}] \leq \frac{E_{f_{X}}\left[e^{t X}\right]}{e^{a t}}=\frac{M_{X}(t)}{e^{a t}}
$$

provided $t<h$ also. Using similar methods,

$$
P[X \leq a] \leq e^{-a t} M_{X}(t) \quad \text { for }-h<t<0
$$

THEOREM Tail bounds for the Normal density

If $Z \sim N(0,1)$, then for $t>0$

$$
P[|Z| \geq t] \leq \sqrt{\frac{2}{\pi}} \frac{e^{-t^{2} / 2}}{t}
$$

Proof.

$$
P[Z \geq t]=\left(\frac{1}{2 \pi}\right)^{1 / 2} \int_{t}^{\infty} e^{-x^{2} / 2} d x \leq\left(\frac{1}{2 \pi}\right)^{1 / 2} \int_{t}^{\infty} \frac{x}{t} e^{-x^{2} / 2} d x=\left(\frac{1}{2 \pi}\right)^{1 / 2} \frac{e^{-t^{2} / 2}}{t}
$$

and by symmetry $P[|Z| \geq t]=2 P[Z \geq t]$.
Note: Using similar methods

$$
P[|Z| \geq t] \geq \sqrt{\frac{2}{\pi}} \frac{t e^{-t^{2} / 2}}{1+t^{2}}
$$

yielding a lower bound on this probability.

Figure 1: The function $f_{k}(d)=d-(1+d) \log (1+d)+d^{k} / 3$ for $k=1,2,3,4,5$. The function is negative on $0<d<1$ for each $k \geq 2$.

2. INEQUALITIES FOR MULTIPLE RANDOM VARIABLES

LEMMA

Let $a, b>0$ and $p, q>1$ satisfy

$$
\begin{equation*}
\frac{1}{p}+\frac{1}{q}=1 \tag{1}
\end{equation*}
$$

Then

$$
\frac{1}{p} a^{p}+\frac{1}{q} b^{q} \geq a b
$$

with equality if and only if $a^{p}=b^{q}$.
Proof. Fix $b>0$. Let

$$
g(a ; b)=\frac{1}{p} a^{p}+\frac{1}{q} b^{q}-a b .
$$

We require that $g(a ; b) \geq 0$ for all a. Differentiating wrt a for fixed b yields

$$
g^{(1)}(a ; b)=a^{p-1}-b
$$

so that $g(a ; b)$ is minimized (the second derivative is strictly positive at all a) when $a^{p-1}=b$, and at this value of a, the function takes the value

$$
\frac{1}{p} a^{p}+\frac{1}{q}\left(a^{p-1}\right)^{q}-a\left(a^{p-1}\right)=\frac{1}{p} a^{p}+\frac{1}{q} a^{p}-a^{p}=0
$$

as, by equation (1), $1 / p+1 / q=1 \Longrightarrow(p-1) q=p$. As the second derivative is strictly positive at all a, the minimum is attained at the unique value of a where $a^{p-1}=b$, where, raising both sides to power q yields $a^{p}=b^{q}$.

THEOREM (HÖLDER'S INEQUALITY)

Suppose that X and Y are two random variables, and $p, q>1$ satisfy 1 . Then

$$
\left|E_{f_{X, Y}}[X Y]\right| \leq E_{f_{X, Y}}[|X Y|] \leq\left\{E_{f_{X}}\left[|X|^{p}\right]\right\}^{1 / p}\left\{E_{f_{Y}}\left[|Y|^{q}\right]\right\}^{1 / q}
$$

Proof. (continuous case) For the first inequality,

$$
E_{f_{X, Y}}[|X Y|]=\iint|x y| f_{X, Y}(x, y) d x d y \geq \iint x y f_{X, Y}(x, y) d x d y=E_{f_{X, Y}}[X Y]
$$

and

$$
\begin{aligned}
& E_{f_{X, Y}}[X Y]=\iint x y f_{X, Y}(x, y) d x d y \geq \iint-|x y| f_{X, Y}(x, y) d x d y=-E_{f_{X, Y}}[|X Y|] \\
& -E_{f_{X, Y}}[|X Y|] \leq E_{f_{X, Y}}[X Y] \leq E_{f_{X, Y}}[|X Y|] \quad \therefore \quad\left|E_{f_{X, Y}}[X Y]\right| \leq E_{f_{X, Y}}[|X Y|] .
\end{aligned}
$$

so

For the second inequality, set

$$
a=\frac{|X|}{\left\{E_{f_{X}}\left[|X|^{p}\right]\right\}^{1 / p}} \quad b=\frac{|Y|}{\left\{E_{f_{Y}}\left[|Y|^{q}\right]\right\}^{1 / q}} .
$$

Then from the previous lemma

$$
\frac{1}{p} \frac{|X|^{p}}{E_{f_{X}}\left[|X|^{p}\right]}+\frac{1}{q} \frac{|Y|^{q}}{E_{f_{Y}}\left[|Y|^{q}\right]} \geq \frac{|X Y|}{\left\{E_{f_{X}}\left[|X|^{p}\right]\right\}^{1 / p}\left\{E_{f_{Y}}\left[|Y|^{q}\right]\right\}^{1 / q}}
$$

and taking expectations yields, on the left hand side,

$$
\frac{1}{p} \frac{E_{f_{X}}\left[|X|^{p}\right]}{E_{f_{X}}\left[|X|^{p}\right]}+\frac{1}{q} \frac{E_{f_{Y}}\left[|Y|^{q}\right]}{E_{f_{Y}}\left[|Y|^{q}\right]}=\frac{1}{p}+\frac{1}{q}=1
$$

and on the right hand side

$$
\frac{E_{f_{X, Y}}[|X Y|]}{\left\{E_{f_{X}}\left[|X|^{p}\right]\right\}^{1 / p}\left\{E_{f_{Y}}\left[|Y|^{q}\right]\right\}^{1 / q}}
$$

and the result follows.

THEOREM (CAUCHY-SCHWARZ INEQUALITY)

Suppose that X and Y are two random variables.

$$
\left|E_{f_{X, Y}}[X Y]\right| \leq E_{f_{X, Y}}[|X Y|] \leq\left\{E_{f_{X}}\left[|X|^{2}\right]\right\}^{1 / 2}\left\{E_{f_{Y}}\left[|Y|^{2}\right]\right\}^{1 / 2}
$$

Proof. Set $p=q=2$ in the Hölder Inequality.

Corollaries:

(a) Let μ_{X} and μ_{Y} denote the expectations of X and Y respectively. Then, by the Cauchy-Schwarz inequality

$$
\left|E_{f_{X, Y}}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]\right| \leq\left\{E_{f_{X}}\left[\left(X-\mu_{X}\right)^{2}\right]\right\}^{1 / 2}\left\{E_{f_{Y}}\left[\left(Y-\mu_{Y}\right)^{2}\right]\right\}^{1 / 2}
$$

so that

$$
E_{f_{X, Y}}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \leq E_{f_{X}}\left[\left(X-\mu_{X}\right)^{2}\right] E_{f_{Y}}\left[\left(Y-\mu_{Y}\right)^{2}\right]
$$

and hence

$$
\left\{\operatorname{Cov}_{f_{X, Y}}[X, Y]\right\}^{2} \leq \operatorname{Var}_{f_{X}}[X] \operatorname{Var}_{f_{Y}}[Y] .
$$

(b) Lyapunov's Inequality: Define $Y=1$ with probability one. Then, for $1<p<\infty$

$$
E_{f_{X}}[|X|] \leq\left\{E_{f_{X}}\left[|X|^{p}\right]\right\}^{1 / p}
$$

Let $1<r<p$. Then

$$
E_{f_{X}}\left[|X|^{r}\right] \leq\left\{E_{f_{X}}\left[|X|^{p r}\right]\right\}^{1 / p}
$$

and letting $s=p r>r$ yields

$$
E_{f_{X}}\left[|X|^{r}\right] \leq\left\{E_{f_{X}}\left[|X|^{s}\right]\right\}^{r / s}
$$

so that

$$
\left\{E_{f_{X}}\left[|X|^{r}\right]\right\}^{1 / r} \leq\left\{E_{f_{X}}\left[|X|^{s}\right]\right\}^{1 / s}
$$

for $1<r<s<\infty$.

THEOREM (MINKOWSKI'S INEQUALITY)

Suppose that X and Y are two random variables, and $1 \leq p<\infty$. Then

$$
\left\{E_{f_{X, Y}}\left[|X+Y|^{p}\right]\right\}^{1 / p} \leq\left\{E_{f_{X}}\left[|X|^{p}\right]\right\}^{1 / p}+\left\{E_{f_{Y}}\left[|Y|^{p}\right]\right\}^{1 / p}
$$

Proof. Write

$$
\begin{aligned}
E_{f_{X, Y}}\left[|X+Y|^{p}\right] & =E_{f_{X, Y}}\left[|X+Y||X+Y|^{p-1}\right] \\
& \leq E_{f_{X, Y}}\left[|X||X+Y|^{p-1}\right]+E_{f_{X, Y}}\left[|Y||X+Y|^{p-1}\right]
\end{aligned}
$$

by the triangle inequality $x+y|\leq|x|+|y|$. Using Hölder's Inequality on the terms on the right hand side, for q selected to satisfy $1 / p+1 / q=1$,
$E_{f_{X, Y}}\left[|X+Y|^{p}\right] \leq\left\{E_{f_{X}}\left[|X|^{p}\right]\right\}^{1 / p}\left\{E_{f_{X, Y}}\left[|X+Y|^{q(p-1)}\right]\right\}^{1 / q}+\left\{E_{f_{Y}}\left[|Y|^{p}\right]\right\}^{1 / p}\left\{E_{f_{X, Y}}\left[|X+Y|^{q(p-1)}\right]\right\}^{1 / q}$
and dividing through by $\left\{E_{f_{X, Y}}\left[|X+Y|^{q(p-1)}\right]\right\}^{1 / q}$ yields

$$
\frac{E_{f_{X, Y}}\left[|X+Y|^{p}\right]}{\left\{E_{f_{X, Y}}\left[|X+Y|^{q(p-1)}\right]\right\}^{1 / q}} \leq\left\{E_{f_{X}}\left[|X|^{p}\right]\right\}^{1 / p}+\left\{E_{f_{Y}}\left[|Y|^{p}\right]\right\}^{1 / p}
$$

and the result follows as $q(p-1)=p$, and $1-1 / q=1 / p$.

3. JENSEN'S INEQUALITY

Jensen's Inequality gives a lower bound on expectations of convex functions. Recall that a function $g(x)$ is convex if, for $0<\lambda<1, g(\lambda x+(1-\lambda) y) \leq \lambda g(x)+(1-\lambda) g(y)$ for all x and y. Alternatively, function $g(x)$ is convex if

$$
\frac{d^{2}}{d t^{2}}\{g(t)\}_{t=x}=g^{(2)}(x) \geq 0
$$

Conversely, $g(x)$ is concave if $-g(x)$ is convex.
THEOREM (JENSEN'S INEQUALITY)
Suppose that X is a random variable with expectation μ, and function g is convex. Then

$$
E_{f_{X}}[g(X)] \geq g\left(E_{f_{X}}[X]\right)
$$

with equality if and only if, for every line $a+b x$ that is a tangent to g at μ

$$
P[g(X)=a+b X]=1 .
$$

that is, $g(x)$ is linear.
Proof. Let $l(x)=a+b x$ be the equation of the tangent at $x=\mu$. Then, for each $x, g(x) \geq a+b x$ as in the figure below.

Figure 2: The function $g(x)$ and its tangent at $x=\mu$.
Thus

$$
E_{f_{X}}[g(X)] \geq E_{f_{X}}[a+b X]=a+b E_{f_{X}}[X]=l(\mu)=g(\mu)=g\left(E_{f_{X}}[X]\right)
$$

as required. Also, if $g(x)$ is linear, then equality follows by properties of expectations. Suppose that

$$
E_{f_{X}}[g(X)]=g\left(E_{f_{X}}[X]\right)=g(\mu)
$$

but $g(x)$ is convex, but not linear. Let $l(x)=a+b x$ be the tangent to g at μ. Then by convexity

$$
g(x)-l(x)>0 \quad \therefore \quad \int(g(x)-l(x)) f_{X}(x) d x=\int g(x) f_{X}(x) d x-\int l(x) f_{X}(x) d x>0
$$

and hence

$$
E_{f_{X}}[g(X)]>E_{f_{X}}[l(X)]
$$

But $l(x)$ is linear, so $E_{f_{X}}[l(X)]=a+b E_{f_{X}}[X]=g(\mu)$, yielding the contradiction

$$
E_{f_{X}}[g(X)]>g\left(E_{f_{X}}[X]\right)
$$

and the result follows.

Corollary and examples:

- If $g(x)$ is concave, then

$$
E_{f_{X}}[g(X)] \leq g\left(E_{f_{X}}[X]\right)
$$

- $g(x)=x^{2}$ is convex, thus

$$
E_{f_{X}}\left[X^{2}\right] \geq\left\{E_{f_{X}}[X]\right\}^{2}
$$

- $g(x)=\log x$ is concave, thus

$$
E_{f_{X}}[\log X] \leq \log \left\{E_{f_{X}}[X]\right\}
$$

LEMMA

Suppose that X is a random variable, with finite expectation μ. Let g be a non-decreasing function. Then

$$
E_{f_{X}}[g(X)(X-\mu)] \geq 0
$$

Proof. Using the indicator random variable $I_{A}(X)$,

$$
\begin{aligned}
E_{f_{X}}[g(X)(X-\mu)] & =E_{f_{X}}\left[g(X)(X-\mu) I_{(-\infty, 0)}(X-\mu)\right]+E_{f_{X}}\left[g(X)(X-\mu) I_{[0, \infty)}(X-\mu)\right] \\
& =\int_{-\infty}^{\mu} g(x)(x-\mu) f_{X}(x) d x+\int_{\mu}^{\infty} g(x)(x-\mu) f_{X}(x) d x \\
& \geq \int_{-\infty}^{\mu} g(\mu)(x-\mu) f_{X}(x) d x+\int_{\mu}^{\infty} g(\mu)(x-\mu) f_{X}(x) d x \\
& =E_{f_{X}}\left[g(\mu)(X-\mu) I_{(-\infty, 0)}(X-\mu)\right]+E_{f_{X}}\left[g(\mu)(X-\mu) I_{[0, \infty)}(X-\mu)\right] \\
& =E_{f_{X}}[g(\mu)(X-\mu)]=0
\end{aligned}
$$

