556: Mathematical Statistics I

THE CENTRAL LIMIT THEOREM

THEOREM (THE LINDEBERG-LÉVY CENTRAL LIMIT THEOREM)

Suppose X_{1}, \ldots, X_{n} are i.i.d. random variables with $\mathrm{mgf} M_{X}$, with

$$
\mathrm{E}_{f_{X}}\left[X_{i}\right]=\mu \quad \operatorname{Var}_{f_{X}}\left[X_{i}\right]=\sigma^{2}
$$

both finite. Let the random variable Z_{n} be defined by

$$
Z_{n}=\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sqrt{n \sigma^{2}}}=\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sigma}
$$

where

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

and denote by $M_{Z_{n}}$ the mgf of Z_{n}. Then, as $n \longrightarrow \infty$,

$$
M_{Z_{n}}(t) \longrightarrow \exp \left\{t^{2} / 2\right\}
$$

irrespective of the form of M_{X}. Thus, as $n \longrightarrow \infty, Z_{n} \xrightarrow{d} Z \sim N(0,1)$.
Proof. First, let $Y_{i}=\left(X_{i}-\mu\right) / \sigma$ for $i=1, \ldots, n$. Then Y_{1}, \ldots, Y_{n} are i.i.d. with mgf M_{Y} say, and by the elementary properties of expectation, $\mathrm{E}_{f_{Y}}\left[Y_{i}\right]=0, \operatorname{Var}_{f_{Y}}\left[Y_{i}\right]=1$ for each i. Using the power series expansion result for mgfs, we have that

$$
M_{Y}(t)=1+t E_{f_{Y}}[Y]+\frac{t^{2}}{2!} E_{f_{Y}}\left[Y^{2}\right]+\frac{t^{3}}{3!} E_{f_{Y}}\left[Y^{3}\right]+\ldots=1+\frac{t^{2}}{2!}+O\left(t^{3}\right)
$$

using the $O\left(t^{3}\right)$ notation to capture all terms involving t^{3} and higher power. Now, the random variable Z_{n} can be rewritten

$$
Z_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} Y_{i}
$$

and thus, again by a standard mgf result, as Y_{1}, \ldots, Y_{n} are independent, we have that

$$
M_{Z_{n}}(t)=\prod_{i=1}^{n}\left\{M_{Y}(t / \sqrt{n})\right\}=\left\{1+\frac{t^{2}}{2 n}+O\left(n^{-3 / 2}\right)\right\}^{n}=\left\{1+\frac{t^{2}}{2 n}+o\left(n^{-1}\right)\right\}^{n}
$$

As $n \longrightarrow \infty$, by the definition of the exponential function

$$
M_{Z_{n}}(t) \longrightarrow \exp \left\{t^{2} / 2\right\} \quad \therefore \quad Z_{n} \xrightarrow{d} Z \sim N(0,1)
$$

where no further assumptions on M_{X} are required.
Alternative statement: The theorem can also be stated in terms of

$$
Z_{n}=\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sqrt{n}}=\sqrt{n}\left(\bar{X}_{n}-\mu\right)
$$

so that

$$
Z_{n} \xrightarrow{d} Z \sim N\left(0, \sigma^{2}\right) .
$$

and σ^{2} is termed the asymptotic variance of Z_{n}.

Notes:

(i) The theorem requires the existence of the $\mathbf{m g f} M_{X}$.
(ii) The theorem holds for the i.i.d. case, but there are similar theorems for non identically distributed, and dependent random variables.
(iii) The theorem allows the construction of asymptotic normal approximations. For example, for large but finite n, by using the properties of the Normal distribution,

$$
\begin{aligned}
\bar{X}_{n} & \sim A N\left(\mu, \sigma^{2} / n\right) \\
S_{n}=\sum_{i=1}^{n} X_{i} & \sim A N\left(n \mu, n \sigma^{2}\right) .
\end{aligned}
$$

where $A N\left(\mu, \sigma^{2}\right)$ denotes an asymptotic normal distribution. The notation

$$
\bar{X}_{n} \dot{\succ} N\left(\mu, \sigma^{2} / n\right)
$$

is sometimes used.
(iv) The multivariate version of this theorem can be stated as follows: Suppose ${\underset{\sim}{x}}_{1}, \ldots,{\underset{\sim}{x}}_{n}$ are i.i.d. k-dimensional random variables with $\mathrm{mgf} M_{\underset{\sim}{X}}$, with

$$
\mathrm{E}_{f_{\sim}^{X}}\left[{\underset{\sim}{X}}^{X}\right]=\underset{\sim}{\mu} \quad \operatorname{Var}_{f_{X}}\left[{\underset{\sim}{\sim}}_{i}^{X}\right]=\Sigma
$$

where Σ is a positive definite, symmetric $k \times k$ matrix defining the variance-covariance matrix of the $\underset{\sim}{X}$. Let the random variable $\underset{\sim}{Z}$ be defined by

$$
{\underset{\sim}{Z}}_{n}=\sqrt{n}\left({\underset{\sim}{X}}_{n}-\underset{\sim}{\mu}\right)
$$

where

$$
{\underset{\sim}{X}}_{n}=\frac{1}{n} \sum_{i=1}^{n} \underset{\sim}{X} .
$$

Then

$$
\underset{\sim}{Z} \xrightarrow{d} \underset{\sim}{Z} \sim N(0, \Sigma)
$$

as $n \longrightarrow \infty$.

