556: MATHEMATICAL STATISTICS I

ASYMPTOTIC APPROXIMATIONS AND THE DELTA METHOD

To approximate the distribution of elements in sequence of random variables {X,,} for large n, we

attempt to find sequences of constants {a,} and {b,} such that Z,, = a, X,, + b, 4, Z,where Z has
some distribution characterized by cdf F;. Then, for large n, 7, (2) = Fz(z), so

Fx,(z) = P[X,, < z] = Pla, Xy, + b, < anz + by| = Fz, (anx + by,) = Fz(apx + by).

EXAMPLE Suppose that X1, X», ..., X, areii.d. such that X; ~ Exp(1), and let
Y, = max{X1, Xo,..., X, }. Then by a previous result, Fy, (y) = {Fx(y)}", so fory > 0,
Fy,(y) = {1 — e ¥} — 0, and there is no limiting distribution. However, if we take a,, = 1 and

b, = —logn, and set Z,, = a, Y, + by, then as n — oo,
Fr(2) = PlZy<2]= PV, <z+logn] = {1—e " 6mn — exp{—e~*} = Fy(2),
Fy,(y) = P[Yn<yl=P[Z, <y—logn] = Fz(y —logn) = exp{—e ¥"%¢"} = exp{—ne ¥}
and by differentiating

fv, (y) = ne Yexp{—ne ¥} y>0.
This can be compared with the exact version
fra(y) =ne”(1 —e™)" y>0.

The figure below compares the approximations for n = 50, 100, 500, 1000. Solid lines use the exact
formula, dotted lines use the approximation, histograms are 5000 simulated values.
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DEFINITION (ASYMPTOTIC NORMALITY)
A sequence of random variables { X, } is asymptotically normally distributed as n — oo if there
exist sequences of real constants {y,, } and {0, } (with o, > 0) such that

X, —
Sn Tl 4,z N(0,1).

On
The notation X,, ~ N (j,,02) or X,, ~ AN (,,,02) as n — oo is commonly used.

THEOREM (THE DELTA METHOD)
Consider sequence of random variables {X,,} such that

V(X — ) L X.
Suppose that g(.) is a function such that first derivative g(*)(.) is continuous in a neighbourhood of .,
with g(M (1) # 0. Then
Vilg(Xa) = g(n) == gV (W X.
In particular, if
Vi(Xn — 1) —% X ~ N(0,02).

then
Valg(X,) — g(w) 5 gD ()X ~ N(0,{gM (1)}20?).

Proof. Consider a Taylor series expansion of g(X,,) about ;

9™ ()
7l

9(Xn) = g() + gV (W)(Xn — 1)+ (Xn — )" (1)
r=2

Now as
VX, —p)-HXx =  X,-p-to = X, %u

it can be shown that

> ()
S W (x, o
r=2 :

and we can rewrite equation (1) that

9(Xn) = (1) + g (1) (Xp — 1) + 0p(1)

using the stochastic order notation, where 0,,(1) indicates a term that converges in probability to zero.
Thus using Slutsky’s Theorem, we have that

Vi(g(Xn) = g(1) = gV ()Vn(X, — u) 5 g ()X

and if X ~ N(0, 0?), it follows from the properties of the Normal distribution that

Vi(9(Xa) — g(1) ~% N (0, {g® (1)}20?).



Note: This result extends to the multivariate case. Consider a sequence of vector random variables
{X,,} such that

VX, —p) -5 X
and g : R¥ — R? is a vector-valued function with first derivative matrix ¢*)(.) which is continuous
in a neighbourhood of p, with g(l)(g) # 0. Note that g can be considered as a d x 1 vector of scalar

functions.
9(z) = (q1(2), ..., galz))".

Note that g(l)(:g) is a (d x k) matrix with (i, j)th element

dgi(x)
8a;j

Under these assumptions, in general
d
Valg(X,) — g(w) —= gV (wX.
and in particular, if
VX, —p) -5 X ~ N(0,%).

where ¥ is a positive definite, symmetric k£ x k matrix, then

J T
Vilg(X,) — g() 5 gV (@)X ~ N (07 {g(”(u)} > {g“)(u)} ) |

THEOREM (THE SECOND ORDER DELTA METHOD: Normal case)
Consider sequence of random variables { X}, } such that

VX, — p) 4, N(0,0?).

Suppose that g(.) is a function such that first derivative g(!)(.) is continuous in a neighbourhood of ,
with ¢V (1) = 0, but second derivative exists at y with ¢ (1) # 0. Then

d

n(g(Xn) —g(n) — 2900

2

where X ~ 3.

Proof. Uses a second order Taylor approximation; informally

(2)
9(Xn) = () + gV (1) (X — 1) + 2 ;M) (X0 — 1)* + 0p(1)
thus, as ¢/ (u) = 0,
(2)
0(5) — a(n) = T (X, — ) 4 0,1)
and thus o o
n(g(X,) — g(1)) = LU (VX =y L 020 2

where Z2 ~ x3. 1



EXAMPLES

1. Under the conditions of the Central Limit Theorem, for random variables X1, ..., X,, and their
sample mean random variable X,

Vn(Xn — p) -5 X ~ N(0,02).
Consider g(x) = 22, so that g (z) = 2z, and hence, if 11 # 0,
V(X" = i) =5 X ~ N(0,4p%0?)

and )
X" ~ AN (i, 4p%0? /n)

If u = 0, we proceed by a different route to compute the approximate distribution of Ynz ; hote
that, if © =0,

VX, -5 X ~ N(0,02)

so therefore ,
nX,’ = (vVnX,)? -5 X2 ~ Gamma(1/2,1/(202))

by elementary transformation results. Hence, for large n,
X, ~ Gamma(1/2,n/(20?))

2. Again under the conditions of the CLT, consider the distribution of 1/ X,,. In this case, we have a
function g(z) = 1/, so gV (z) = —1/22, and if ;1 # 0, the Delta method gives

Va(1/X, —1/p) -5 X ~ N(0,0%/ut)

or,
~ AN(1/p,n" a? /).

.



