
556: MATHEMATICAL STATISTICS I

ASYMPTOTIC APPROXIMATIONS AND THE DELTA METHOD

To approximate the distribution of elements in sequence of random variables {Xn} for large n, we

attempt to find sequences of constants {an} and {bn} such that Zn = anXn + bn
d−→ Z, where Z has

some distribution characterized by cdf FZ . Then, for large n, FZn(z) l FZ(z), so

FXn(x) = P [Xn ≤ x] = P [anXn + bn ≤ anx + bn] = FZn(anx + bn) l FZ(anx + bn).

EXAMPLE Suppose that X1, X2, . . . , Xn are i.i.d. such that Xi ∼ Exp(1), and let
Yn = max{X1, X2, . . . , Xn}. Then by a previous result, FYn(y) = {FX(y)}n, so for y > 0,
FYn(y) = {1− e−y}n −→ 0, and there is no limiting distribution. However, if we take an = 1 and
bn = − log n, and set Zn = anYn + bn, then as n −→∞,

FZn(z) = P [Zn ≤ z] = P [Yn ≤ z + log n] = {1− e−z−log n}n −→ exp{−e−z} = FZ(z),

∴ FYn(y) = P [Yn ≤ y] = P [Zn ≤ y − log n] l FZ(y − log n) = exp{−e−y+log n} = exp{−ne−y}

and by differentiating
fYn(y) l ne−y exp{−ne−y} y > 0.

This can be compared with the exact version

fYn(y) = ne−y(1− e−y)n y > 0.

The figure below compares the approximations for n = 50, 100, 500, 1000. Solid lines use the exact
formula, dotted lines use the approximation, histograms are 5000 simulated values.
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DEFINITION (ASYMPTOTIC NORMALITY)
A sequence of random variables {Xn} is asymptotically normally distributed as n −→∞ if there
exist sequences of real constants {µn} and {σn} (with σn > 0) such that

Xn − µn

σn

d−→ Z ∼ N(0, 1).

The notation Xn .∼. N(µn, σ2
n) or Xn ∼ AN(µn, σ2

n) as n −→∞ is commonly used.

THEOREM (THE DELTA METHOD)
Consider sequence of random variables {Xn} such that

√
n(Xn − µ) d−→ X.

Suppose that g(.) is a function such that first derivative g(1)(.) is continuous in a neighbourhood of µ,
with g(1)(µ) 6= 0. Then √

n(g(Xn)− g(µ)) d−→ g(1)(µ)X.

In particular, if √
n(Xn − µ) d−→ X ∼ N(0, σ2).

then √
n(g(Xn)− g(µ)) d−→ g(1)(µ)X ∼ N(0, {g(1)(µ)}2σ2).

Proof. Consider a Taylor series expansion of g(Xn) about µ;

g(Xn) = g(µ) + g(1)(µ)(Xn − µ) +
∞∑

r=2

g(r)(µ)
r!

(Xn − µ)r (1)

Now as √
n(Xn − µ) d−→ X =⇒ Xn − µ

d−→ 0 =⇒ Xn
d−→ µ

it can be shown that ∞∑

r=2

g(r)(µ)
r!

(Xn − µ)r d−→ 0

and we can rewrite equation (1) that

g(Xn) = g(µ) + g(1)(µ)(Xn − µ) + op(1)

using the stochastic order notation, where op(1) indicates a term that converges in probability to zero.
Thus using Slutsky’s Theorem, we have that

√
n(g(Xn)− g(µ)) = g(1)(µ)

√
n(Xn − µ) d−→ g(1)(µ)X

and if X ∼ N(0, σ2), it follows from the properties of the Normal distribution that

√
n(g(Xn)− g(µ)) d−→ N(0, {g(1)(µ)}2σ2).
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Note: This result extends to the multivariate case. Consider a sequence of vector random variables
{X˜n

} such that
√

n(X˜n
− µ

˜
) d−→ X˜ .

and g
˜

: Rk −→ Rd is a vector-valued function with first derivative matrix g
˜
(1)(.) which is continuous

in a neighbourhood of µ
˜

, with g(1)(µ
˜
) 6= 0. Note that g

˜
can be considered as a d × 1 vector of scalar

functions.
g
˜
(x
˜
) = (g1(x˜

), . . . , gd(x˜
))T.

Note that g
˜
(1)(x

˜
) is a (d× k) matrix with (i, j)th element

∂gi(x˜
)

∂xj

Under these assumptions, in general

√
n(g

˜
(X˜n

)− g
˜
(µ
˜
)) d−→ g

˜
(1)(µ

˜
)X˜ .

and in particular, if √
n(X˜n

− µ
˜
) d−→ X˜ ∼ N(0, Σ).

where Σ is a positive definite, symmetric k × k matrix, then

√
n(g

˜
(X˜n

)− g
˜
(µ
˜
)) d−→ g

˜
(1)(µ

˜
)X ∼ N

(
0,

{
g
˜
(1)(µ)

}
Σ

{
g
˜
(1)(µ)

}T
)

.

THEOREM (THE SECOND ORDER DELTA METHOD: Normal case)
Consider sequence of random variables {Xn} such that

√
n(Xn − µ) d−→ N(0, σ2).

Suppose that g(.) is a function such that first derivative g(1)(.) is continuous in a neighbourhood of µ,
with g(1)(µ) = 0, but second derivative exists at µ with g(2)(µ) 6= 0. Then

n(g(Xn)− g(µ)) d−→ σ2 g(2)(µ)
2

X

where X ∼ χ2
1.

Proof. Uses a second order Taylor approximation; informally

g(Xn) = g(µ) + g(1)(µ)(Xn − µ) +
g(2)(µ)

2
(Xn − µ)2 + op(1)

thus, as g(1)(µ) = 0,

g(Xn)− g(µ) =
g(2)(µ)

2
(Xn − µ)2 + op(1)

and thus

n(g(Xn)− g(µ)) =
g(2)(µ)

2
{√n(Xn − µ)}2 d−→ σ2 g(2)(µ)

2
Z2

where Z2 ∼ χ2
1.
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EXAMPLES

1. Under the conditions of the Central Limit Theorem, for random variables X1, . . . , Xn and their
sample mean random variable Xn

√
n(Xn − µ) d−→ X ∼ N(0, σ2).

Consider g(x) = x2, so that g(1)(x) = 2x, and hence, if µ 6= 0,

√
n(Xn

2 − µ2) d−→ X ∼ N(0, 4µ2σ2)

and
Xn

2 ∼ AN(µ2, 4µ2σ2/n)

If µ = 0, we proceed by a different route to compute the approximate distribution of Xn
2; note

that, if µ = 0, √
nXn

d−→ X ∼ N(0, σ2)

so therefore
nXn

2 = (
√

nXn)2 d−→ X2 ∼ Gamma(1/2, 1/(2σ2))

by elementary transformation results. Hence, for large n,

Xn
2

.∼. Gamma(1/2, n/(2σ2))

2. Again under the conditions of the CLT, consider the distribution of 1/Xn. In this case, we have a
function g(x) = 1/x, so g(1)(x) = −1/x2, and if µ 6= 0, the Delta method gives

√
n(1/Xn − 1/µ) d−→ X ∼ N(0, σ2/µ4)

or,
1

Xn

∼ AN(1/µ, n−1σ2/µ4).
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