MATH 556 - MID-TERM EXAMINATION

Marks can be obtained by answering all questions. All questions carry equal marks.

1. (a) Suppose that U is a continuous random variable, and $U \sim \operatorname{Uniform}(0,1)$. Let random variable X be defined in terms of U by

$$
X=\sin (\pi U / 2) .
$$

Find
(i) the pdf of X, f_{X},
(ii) the expectation $E_{f_{X}}[X]$,
(iii) the expected area of the (random) triangle \mathcal{U} with corners

$$
(0,0),(U, U / 2),(U,-U / 2)
$$

depicted in the following figure.

(b) The joint pdf of continuous random variables Y and Z is specified via the conditional distribution of Y given $Z=z$, and the marginal distribution for Z. Specifically,

$$
\begin{aligned}
Y \mid Z=z & \sim \operatorname{Uniform}(0, \sqrt{z}) \\
Z & \sim \operatorname{Gamma}(3 / 2, \lambda)
\end{aligned}
$$

for parameter $\lambda>0$. Find the marginal pdf for Y, f_{Y}.
2. Continuous random variables R, X and Y have joint density specified in the following way: the marginal pdf for R, f_{R}, is defined by

$$
f_{R}(r)=4 r^{3} \quad 0<r<1
$$

and zero otherwise, and, for $0<r<1$, the joint conditional pdf for X and Y given that $R=r$, denoted $f_{X, Y \mid R}$, is given by

$$
f_{X, Y \mid R}(x, y \mid r)=k(r) \quad-r<x<r,-r<y<r, 0<x^{2}+y^{2}<r^{2} .
$$

and zero otherwise, where normalizing constant $k(r)$ depends on r.
(a) Find the form of $k(r)$, for $0<r<1$.
(b) Find the joint marginal pdf for X and Y, denoted $f_{X, Y}$.
(c) By inspecting the form of the joint pdf $f_{X, Y}$, deduce the value of the covariance between X and Y. Are X and Y independent ? Justify your answer.
3. (a) Suppose that Z_{1} and Z_{2} are independent $\operatorname{Normal}(0,1)$ random variables.

Find the marginal distributions of random variables U and V where

$$
U=Z_{1}+Z_{2} \quad V=\frac{Z_{1}}{Z_{2}}
$$

Are U and V independent ? Justify your answer.
(b) Let the marginal pdf f_{V} from part (a) be the standard member, henceforth denoted f, of the location-scale family indexed by parameters (θ, σ).
(i) Write down the form of the pdf of the general member of this location-scale family, $f(x \mid \theta, \sigma)$, and show that this function is symmetric about θ.
(ii) Write down the expectation derived from the pdf $f(x \mid \theta, \sigma)$.
4. (a) This question refers to the negative binomial distribution in its "alternative form", where the support of the pmf is $\{0,1,2, \ldots\}$.
(i) Write the negative binomial pmf in the form of an exponential family distribution, using indicator function notation to identify the support of the pmf.
(ii) Identify the natural or canonical parameter for the negative binomial distribution.
(iii) Show that the negative binomial distribution is infinitely divisible.
(b) The hazard function, h_{X}, for a continuous random variable X with pdf f_{X} and $\operatorname{cdf} F_{X}$ is given by

$$
h_{X}(x)=\frac{f_{X}(x)}{1-F_{X}(x)}
$$

(i) Find the hazard function for the W eibull (α, β) distribution.
(ii) Is the Weibull distribution a member of the exponential family? Justify your answer.

