MATH 556 - MID-TERM SOLUTIONS

1. (a) (i) From first principles (univariate transformation theorem also acceptable): for $0<x<1$

$$
F_{X}(x)=P[X \leq x]=P[\sin (\pi U / 2) \leq x]=P\left[U \leq \frac{2}{\pi} \arcsin x\right]=\frac{2}{\pi} \arcsin x
$$

and zero otherwise, as the sine function is monotonic increasing on $(0, \pi / 2)$. Thus,

$$
f_{X}(x)=\frac{2}{\pi \sqrt{1-x^{2}}} \quad 0<x<1
$$

and zero otherwise.
6 MARKS
(ii) We have by direct calculation

$$
E_{f_{X}}[X]=\int_{0}^{1} x \frac{2}{\pi \sqrt{1-x^{2}}} d x=\int_{0}^{1} \sin (\pi u / 2) d u=\left[-\frac{2}{\pi} \cos (\pi u / 2)\right]_{0}^{1}=\frac{2}{\pi}
$$

4 MARKS
(iii) The area of the triangle is $A=U^{2} / 2$, so the expected area of the triangle is

$$
E_{f_{A}}[A]=E_{f_{U}}\left[U^{2} / 2\right]=\int_{0}^{1} u^{2} / 2 d u=\frac{1}{6} .
$$

6 MARKS
(b) We have from the formula sheet

$$
f_{Y, Z}(y, z)=f_{Y \mid Z}(y \mid z) f_{Z}(z)=\frac{1}{\sqrt{z}} \frac{\lambda^{3 / 2}}{\Gamma(3 / 2)} z^{3 / 2-1} e^{-\lambda z}=\frac{\lambda^{3 / 2}}{\Gamma(3 / 2)} e^{-\lambda z} \quad 0<y<\sqrt{z}<\infty
$$

Hence

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{Y, Z}(y, z) d z=\int_{y^{2}}^{\infty} \frac{\lambda^{3 / 2}}{\Gamma(3 / 2)} e^{-\lambda z} d z=\frac{\lambda^{1 / 2}}{\Gamma(3 / 2)} \exp \left\{-\lambda y^{2}\right\} \quad y>0
$$

and zero otherwise.
9 MARKS
2. (a) Given $R=r$ with $0<r<1$, we require that,

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y \mid R}(x, y \mid r) d x d y=1 \quad \int_{y=-r}^{y=r}\left\{\int_{x=-\sqrt{r^{2}-y^{2}}}^{x=\sqrt{r^{2}-y^{2}}} k(r) d x\right\} d y=1
$$

The conditional density is constant on the disk radius r centered at the origin, which has area πr^{2}. Therefore we must have

$$
k(r)=\frac{1}{\pi r^{2}} \quad 0<r<1
$$

(b) The full joint pdf is therefore

$$
f_{R, X, Y}(r, x, y)=f_{X, Y \mid R}(x, y \mid r) f_{R}(r)=\frac{1}{\pi r^{2}} 4 r^{3}=\frac{4 r}{\pi}
$$

on the region defined by

$$
-r<x<r,-r<y<r, 0<x^{2}+y^{2}<r^{2}, 0<r<1,
$$

and zero otherwise. To get the joint marginal for X and Y, we integrate out R from the full joint pdf, that is

$$
f_{X, Y}(x, y)=\int_{-\infty}^{\infty} f_{R, X, Y}(r, x, y) d r=\int_{\sqrt{x^{2}+y^{2}}}^{1} \frac{4 r}{\pi} d r=\frac{1}{\pi}\left[2 r^{2}\right]_{\sqrt{x^{2}+y^{2}}}^{1}=\frac{2}{\pi}\left[1-x^{2}-y^{2}\right]
$$

on the region defined by $0<x<1,0<y<1,0<x^{2}+y^{2}<1$ (that is, the unit circle) and zero otherwise.

9 MARKS
(c) The joint pdf is symmetric in form in x and y, and has support that is the unit circle. The joint pdf is also even in both x and y, and therefore $E_{f_{X}}[X]=E_{f_{Y}}[Y]=0$, and also

$$
E_{f_{X, Y}}[X Y]=\int_{y=-1}^{y=1}\left\{\int_{x=-\sqrt{1^{2}-y^{2}}}^{x=\sqrt{1^{2}-y^{2}}} x y\left(1-x^{2}-y^{2}\right) d x\right\} d y=0
$$

Thus the covariance is zero.
4 MARKS
Despite this X and Y are not independent, as it is not true that

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

for all $(x, y) \in \mathbb{R}^{2}$. For example, on the region interior to the square circumscribing the unit circle, but exterior to the unit circle, $f_{X, Y}(x, y)=0$, but $f_{X}(x)>0$ and $f_{Y}(y)>0$.

4 MARKS
3. (a) By using mgfs, we have that $U \sim N(0,2)$, as

$$
M_{U}(t)=M_{Z_{1}}(t) M_{Z_{2}}(t)=e^{t^{2} / 2} e^{t^{2} / 2}=e^{\{t / \sqrt{2}\}^{2}}
$$

4 MARKS
For V, from first principles

$$
F_{V}(v)=P[V \leq v]=P\left[Z_{1} / Z_{2} \leq v\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{z_{2} v} \phi\left(z_{1}\right) \phi\left(z_{2}\right) d z_{1} d z_{2}
$$

where ϕ is the standard normal pdf. Thus, differentiating wrt v under the integral, we have for $v \in \mathbb{R}$,

$$
\begin{aligned}
f_{V}(v) & =\int_{-\infty}^{\infty} z_{2} \phi\left(z_{2} v\right) \phi\left(z_{2}\right) d z_{2}=\int_{-\infty}^{\infty} z_{2} \frac{1}{2 \pi} \exp \left\{-\frac{1}{2}\left(z_{2}^{2} v^{2}+z_{2}^{2}\right)\right\} d z_{2} \\
& =\frac{1}{2 \pi}\left[-\frac{1}{1+v^{2}} \exp \left\{-\frac{1}{2}\left(z_{2}^{2} v^{2}+z_{2}^{2}\right)\right\}\right]_{-\infty}^{\infty}=\frac{1}{\pi} \frac{1}{1+v^{2}}
\end{aligned}
$$

so $V \sim$ Cauchy.

An alternative method of proof uses the joint transformation theorem.

$$
\left.\begin{array}{l}
U=Z_{1}+Z_{2} \\
V=Z_{1} / Z_{2}
\end{array}\right\} \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
Z_{1}=U V /(V+1) \\
Z_{2}=U /(V+1)
\end{array}\right.
$$

so that the Jacobian is equal to

$$
\left|\begin{array}{cc}
\frac{\partial z_{1}}{\partial u} & \frac{\partial z_{1}}{\partial v} \\
\frac{\partial z_{2}}{\partial u} & \frac{\partial z_{2}}{\partial u}
\end{array}\right|=\left|\begin{array}{cc}
\frac{v}{v+1} & \frac{u}{(v+1)^{2}} \\
\frac{1}{v+1} & -\frac{u}{(v+1)^{2}}
\end{array}\right|=\frac{|u|}{(v+1)^{2}}
$$

and thus the joint pdf is

$$
\begin{align*}
f_{U, V}(u, v) & =f_{X, Y}(u v /(v+1), u /(v+1))|J(u, v)| \\
& =\frac{1}{2 \pi} \exp \left\{-\frac{1}{2}\left[\frac{u^{2} v^{2}}{(v+1)^{2}}+\frac{u^{2}}{(v+1)^{2}}\right]\right\} \frac{|u|}{(v+1)^{2}} \tag{1}\\
& =\frac{1}{2 \pi} \exp \left\{-\frac{u^{2}}{2} \frac{v^{2}+1}{(v+1)^{2}}\right\} \frac{|u|}{(v+1)^{2}} . \tag{2}
\end{align*}
$$

Integrating out u yields

$$
\begin{aligned}
f_{V}(v) & =\int_{-\infty}^{\infty} \frac{1}{2 \pi} \exp \left\{-\frac{u^{2}}{2} \frac{v^{2}+1}{(v+1)^{2}}\right\} \frac{|u|}{(v+1)^{2}} d u \\
& =\frac{1}{\pi} \int_{0}^{\infty} \exp \left\{-\frac{u^{2}}{2} \frac{v^{2}+1}{(v+1)^{2}}\right\} \frac{u}{(v+1)^{2}} d u \\
& =\frac{1}{\pi}\left[-\frac{1}{1+v^{2}} \exp \left\{-\frac{u^{2}}{2} \frac{v^{2}+1}{(v+1)^{2}}\right\}\right]_{0}^{\infty} \\
& =\frac{1}{\pi} \frac{1}{1+v^{2}} \quad v \in \mathbb{R}
\end{aligned}
$$

and so on.
From equation (3), we note that $f_{U, V}(u, v)$ does not factorize into a product of a function of u and a function of v, and thus U and V are not independent.

5 MARKS
(b) (i) From notes

$$
f(x \mid \theta, \sigma)=\frac{1}{\sigma} f_{V}((x-\theta) / \sigma)=\frac{1}{\sigma \pi} \frac{1}{1+(x-\theta)^{2} / \sigma^{2}}
$$

which is symmetric about θ as

$$
(-(x-\theta))^{2}=(x-\theta)^{2}
$$

5 MARKS
(ii) The expectation of the Cauchy distribution is not finite, as

$$
\int_{-\infty}^{\infty} x \frac{1}{\pi} \frac{1}{1+x^{2}} d x
$$

does not converge. Hence the expectation of the distribution specified by $f(x \mid \theta, \sigma)$ is not finite either.
4. (a) The pmf at issue is

$$
f_{X}(x)=\binom{n+x-1}{x} \theta^{n}(1-\theta)^{x} \quad x=0,1,2, \ldots
$$

where we treat θ as a single parameter, and n as a fixed constant in \mathbb{Z}^{+}, as in the case of the Binomial distribution.
(i) The pmf can be written as an exponential family distribution

$$
f(x \mid \theta)=h(x) c(\theta) \exp \{w(\theta) t(x)\} \quad x \in \mathbb{R}
$$

where

$$
h(x)=\binom{n+x-1}{x} I_{\{0,1,2, \ldots\}}(x) \quad c(\theta)=\theta^{n} \quad w(\theta)=\log (1-\theta) \quad t(x)=x
$$

8 MARKS
(ii) The canonical parameter is

$$
\eta=\log (1-\theta)
$$

2 MARKS
(iii) From the formula sheet, the mgf is given by

$$
\begin{equation*}
\left(\frac{\theta}{1-e^{t}(1-\theta)}\right)^{n} \tag{4}
\end{equation*}
$$

Now, consider $N=1,2, \ldots$. As

$$
\left(\frac{\theta}{1-e^{t}(1-\theta)}\right)^{n}=\left\{\left(\frac{\theta}{1-e^{t}(1-\theta)}\right)^{n / N}\right\}^{N}=\{M(t)\}^{N}
$$

it follows that the distribution is infinitely divisible if $M(t)$ is the mgf of a probability distribution, which is the case if

$$
\begin{equation*}
\binom{\alpha+x-1}{x} \theta^{\alpha}(1-\theta)^{x} \tag{5}
\end{equation*}
$$

is a valid pmf when $\alpha=n / N$. But as

$$
\sum_{x=0}^{\infty}\binom{\alpha+x-1}{x}(1-\theta)^{x}=\frac{1}{(1-(1-\theta))^{\alpha}}=\frac{1}{\theta^{\alpha}}
$$

(the "negative binomial expansion"), it is the case that equation (5) is a valid pmf, and therefore the form in equation (4) is infinitely divisible.

6 MARKS
(b) (i) For the Weibull distribution, from the formula sheet,

$$
h_{X}(x)=\frac{f_{X}(x)}{1-F_{X}(x)}=\frac{\alpha \beta x^{\alpha-1} e^{-\beta x^{\alpha}}}{e^{-\beta x^{\alpha}}}=\alpha \beta x^{\alpha-1} \quad x>0
$$

4 MARKS
(ii) The Weibull distribution is not in the exponential family, unless $\alpha=1$, as the term

$$
\beta x^{\alpha}
$$

cannot be written as a sum of terms of the form

$$
\sum_{j=1}^{k} w_{j}(\alpha, \beta) t_{j}(x)
$$

