
MATH 556 - EXERCISES 4: SOLUTIONS

1 Key is to find the i.i.d random variables X1, ..., Xn such that

X =
n∑

i=1

Xi

and then to use the Central Limit Theorem result for large n

Zn =

n∑
i=1

Xi − nµ

√
nσ2

d−→ Z ∼ Normal(0, 1) ∴ X =
n∑

i=1

Xi ∼ AN(nµ, nσ2)

where µ =EfX
[Xi] and σ2 =VarfX

[Xi]

(i) X ∼ Binomial(n, θ) =⇒ X =
n∑

i=1
Xi where Xi ∼ Bernoulli(θ) so that µ =EfX

[Xi] = θ and

σ2 =VarfX
[Xi] = θ(1− θ) and hence

Zn =

n∑
i=1

Xi − nθ

√
nθ(1− θ)

d−→ Normal(0, 1) ∴ X ∼ AN(nθ, nθ(1− θ))

(ii) X ∼ Poisson(λ) =⇒ X =
n∑

i=1
Xi where Xi ∼ Poisson (λ/n) so that µ =EfX

[Xi] = λ/n and

σ2 =VarfX
[Xi] = λ/n and hence

Zn =

n∑
i=1

Xi − n
λ

n√
n (λ/n)

=

n∑
i=1

Xi − λ

√
λ

d−→ Normal(0, 1) ∴ X ∼ ANormal(λ, λ)

Note that this uses the result that the sum of independent Poisson variables also has a Pois-
son distribution (proved using mgfs), and also note that this is in agreement with the mgf
limit result.

(iii) X ∼ NegBinomial(n, θ) =⇒ X =
n∑

i=1
Xi where Xi ∼ Geometric(θ) so that µ =EfX

[Xi] =

1/θ and σ2 =VarfX
[Xi] = (1− θ) /θ2 and hence

Zn =

n∑
i=1

Xi − n
1
θ√

n
(
(1− θ) /θ2

)
d−→ Normal(0, 1) ∴ X ∼ AN

(
n

θ
,
n(1− θ)

θ2

)

(iv) X ∼ Gamma(α, β) =⇒ X =
n∑

i=1
Xi where Xi ∼ Gamma

(α

n
, β

)
so that µ =EfX

[Xi] =
α

nβ

and σ2 =VarfX
[Xi] =

α

nβ2 and hence

Zn =

n∑
i=1

Xi − n
α

nβ√
nα/

(
nβ2

) =

n∑
i=1

Xi − α

β√
α/β2

d−→ Normal(0, 1) ∴ X ∼ AN

(
α

β
,

α

β2

)
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2 Yn = max {X1, ..., Xn} so in the limit as n →∞ we have the limit for fixed y as

FYn(y) = {FX(y)}n = yn →
{

0 y < 1
1 y ≥ 1

that is, a step function with single step of size 1 at y = 1. Hence the limiting random variable Y
is a discrete variable with P [Y = 1] = 1, that is, the limiting distribution is degenerate at 1. For
Zn = min {X1, ..., Xn} so in the limit as n →∞ we have the limit for fixed z as

FZn(z) = 1− {1− FX(z)}n = 1− (1− z)n →
{

0 z ≤ 0
1 z > 0

that is, a step function with single step of size 1 at z = 0. Hence the limiting random variable
Z is a discrete variable with P [Z = 0] = 1, that is, the limiting distribution is degenerate at 0.
Note here that the limiting function is not a cdf as it is not right-continuous, but that the limiting
distribution does still exist - the ordinary definition of convergence in distribution only refers to
pointwise convergence at points of continuity of the limit function, and here is limit function is
not continuous at zero.

Note that these results are intuitively reasonable as, as the sample size gets increasingly large,
we will obtain a random variable arbitrarily close to each end of the range. Note also that these
results describe convergence in distribution, but also we have for 1 > ε > 0

P [|Yn − 1| < ε] = P [1− Yn < ε] = P [1− ε < Yn] = 1− P [Yn < 1− ε] = 1− εn → 1
P [|Zn − 0| < ε] = P [Zn < ε] = 1− (1− ε)n → 1 as n →∞

so we also have convergence in probability of Yn to 1 and of Zn to 0.

3 Zn = min {X1, ..., Xn} so

FZn(z) = 1− {1− FX(z)}n = 1−
(

1−
(

1− 1
z

))n

= 1− 1
zn

z > 1

and so, in the limit as n →∞ we have the limit for fixed z as

FZn(z) →
{

0 z ≤ 1
1 z > 1

that is, a step function with single step of size 1 at z = 1. Hence the limiting random variable Z
is a discrete variable with

P [Z = 1] = 1

that is, the limiting distribution is degenerate at 1. Again, the limiting function is not a cdf as it not
right continuous, but this does not affect out conclusion, as the limit function is not continuous
at 1.

Now if Un = Zn
n , we have from first principles that for u > 1

FUn(u) = P [Un ≤ u] = P [Zn
n ≤ u] = P

[
Zn ≤ u1/n

]
= 1− 1(

u1/n
)n = 1− 1

u

which is a valid cdf, but which does not depend on n. Hence the limiting distribution of Un is
precisely

FU (u) = 1− 1
u

u > 1
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4 Yn = max {X1, ..., Xn} so

FYn(y) = {FX(y)}n =
(

1
1 + e−y

)n

y ∈ R

and so, in the limit as n →∞ we have the limit for fixed y as

FYn(y) → 0 for all y

Hence there is no limiting distribution.

If Un = Yn − log n, we have from first principles that for u > − log n

FUn(u) = P [Un ≤ u] = P [Yn − log n ≤ u] = P [Yn ≤ u + log n] = FYn(u+log n) =
(

1
1 + e−u−log n

)n

so that

FUn(u) =


 1

1 +
e−u

n




n

=
(

1 +
e−u

n

)−n

→ exp
{−e−u

}
as n →∞

which is a valid cdf. Hence the limiting distribution is

FU (u) = exp
{−e−u

}
u ∈ R

5 Yn = max {X1, ..., Xn} so

FYn(y) = {FX(y)}n =
(

λy

1 + λy

)n

y > 0

and so, in the limit as n →∞ we have the limit for fixed y as

FYn(y) → 0 for all y

Hence there is no limiting distribution.

Zn = min {X1, ..., Xn} so in the limit as n →∞ we have the limit for fixed z > 0 as

FZn(z) = 1− {1− FX(z)}n = 1−
(

1−
(

1− 1
1 + λz

))n

= 1− 1
(1 + λz)n

→
{

0 z ≤ 0
1 z > 0

that is, a step function with single step of size 1 at z = 0. Hence the limiting random variable Z
is a discrete variable with P[Z = 0] = 1 that is, the limiting distribution is degenerate at 0. Again,
the limiting function is not a cdf as it not right continuous, but this does not affect out conclusion,
as the limit function is not continuous at 0.

If Un = Yn/n, we have from first principles that for u > 0

FUn(u) = P [Un ≤ u] = P [Yn/n ≤ u] = P [Yn ≤ nu] = FYn(nu) =
(

λnu

1 + λnu

)n

so that

FUn(u) =
(

λnu

1 + λnu

)n

=
(

1 +
1

nλu

)−n

→ exp
{
− 1

λu

}
as n →∞
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which is a valid cdf. Hence the limiting distribution is

FU (u) = exp
{
− 1

λu

}
u > 0

If Vn = nZn, we have from first principles that for u > 0

FVn(v) = P [Vn ≤ v] = P [nZn ≤ v] = P [Zn ≤ v/n] = FZn(v/n) = 1−


 1

1 +
λv

n




n

so that

FVn(v) = 1−
(

1 +
λv

n

)−n

= 1−
(

1 +
λv

n

)−n

→ 1− exp {−λv} as n →∞

which is a valid cdf. Hence the limiting distribution is

FV (v) = 1− exp {−λv} v > 0

Hence the limiting random variable V ∼ Exponential(λ).

Yn = max {X1, ..., Xn} so

FYn(y) = {FX(y)}n = (1− e−λy)n y > 0

6 Xi ∼ Poisson(λ) so
n∑

i=1

Xi ∼ Poisson(nλ) by mgfs and hence by the CLT,

n∑

i=1

Xi ∼ AN(nλ, nλ) ∴ X =
1
n

n∑

i=1

Xi ∼ AN

(
λ,

λ

n

)

and hence, for ε > 0

P
[∣∣X − λ

∣∣ < ε
]

= P
[
λ− ε < X < λ + ε

] ≈ Φ

(
ε√
λ/n

)
− Φ

(
−ε√
λ/n

)
→ 1

as n →∞. Hence, X converges in probability to λ

X
p→ λ

Now, if Tn = exp {−Mn}, then for ε > 0 we have

P
[∣∣∣Tn − e−λ

∣∣∣ < ε
]

= P
[
e−λ − ε < Tn < e−λ + ε

]
= P

[
− log(e−λ + ε) < Mn < − log(e−λ − ε)

]

and hence

P
[∣∣∣Tn − e−λ

∣∣∣ < ε
]

=≈ Φ

(
− log(e−λ − ε)− λ√

λ/n

)
− Φ

(
− log(e−λ + ε)− λ√

λ/n

)
→ 1

as n →∞. Hence, Tn converges in probability to e−λ.
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7 (a) Clearly if the sequence converges, it converges to 1 or 2, and as n −→ ∞ it is clear that the
probability P [Xn = 1] −→ 0, so we check whether the limit is 2.

We have

E
[|Xn − 2|2] =

(
| − 1|2 × 1

n

)
+

(
|0|2 × n− 1

n

)
=

1
n
−→ 0 as n −→∞

so Xn
r=2−→ 2; we can also prove directly that, for ε > 0,

P [|Xn − 2| < ε] = P [Xn = 2] = 1− 1
n
−→ 1 as n −→∞

so Xn
p−→ 2 (although this does follow because of the convergence in r = 2 mean).

(b) Here it seems that Xn may converge to 1; we have

E
[|Xn − 1|2] =

(
|n2 − 1|2 × 1

n

)
+

(
|0|2 × n− 1

n

)
=

(n2 − 1)2

n
9 0 as n −→∞

so Xn does not converge in r = 2 mean to 1; by similar arguments, it can be shown that
Xn does not converge in this mode to any fixed constant. However, we can prove that, for
ε > 0,

P [|Xn − 1| < ε] = P [Xn = 1] = 1− 1
n
−→ 1 as n −→∞ ∴ Xn

p−→ 1.

(c) Here it seems that Xn may converge to 0; we have

E
[|Xn − 0|2] =

(
|n|2 × 1

log n

)
+

(
|0|2 × 1− 1

log n

)
=

n2

log n
9 0 as n −→∞

so Xn does not converge in r = 2 mean to 0; by similar arguments, it can be shown that Xn

does not converge in this mode to any fixed constant. However, for ε > 0,

P [|Xn − 0| < ε] = P [Xn = 0] = 1− 1
log n

−→ 1 as n −→∞ Xn
p−→ 0.

8 (a) Let An be the event (Xn 6= 0). Then P (An) = 1/n, and hence

∞∑

n=1

P (An) = ∞.

The events A1, A2, . . . are independent, so by the BC Lemma part (II),

P (An occurs i.o) = 1,

so Xn does not converge a.s. to 0. Xn only takes values in {0, 1}, and P [Xn = 0] > 0 for any
finite n, so Xn does not converge to 1 a.s. either. Hence Xn does not converge a.s. to any
real value.

(b) We have

E [|Xn|] = E
[
I[0,n−1) (Un)

]
= P

[
Un ≤ n−1

]
=

1
n

so
Xn

r=1→ XB

where P [XB = 0] = 1, and we have convergence in rth mean to zero for r = 1.
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9 P [Xn = 0] −→ 1 as n −→ ∞, so we check zero as a possible limiting variable. For a.s. conver-
gence,

P
[

lim
n−→∞ |Xn| < ε

]
= P

[
lim

n−→∞Xn < ε
]

= P [Z < 1] = 1

as the sequence of sets defined by (0, 1− n−1) increases to limit (0, 1) as n −→∞, so we do have
a.s. convergence to zero. However, for convergence in rth mean: we have

E[|Xr|] = nr × P [X = n] + 0× P [X = 0] =
nr

n

so {Xn} does not converge in rth mean to zero for any r ≥ 1.

10 Here we use the Borel-Cantelli Lemma, part (b); as

∞∑

n=1

P [Xn = 1] = ∞

and the events concerned are independent, then P [ Xn = 1 infinitely often ] = 1.

MATH 556 SOLUTIONS 4 Page 6 of 6


