MATH 556-EXERCISES 3: SOLUTIONS

1 We use the usual marginalization formula if X is continuous

$$
f_{Y}(y)=\int f_{X, Y}(x, y) d x=\int f_{Y \mid X}(y \mid x) f_{X}(x) d x
$$

In each case, the resulting integrand is proportional to a pdf, so that the integral can be evaluated directly.
(i) For $y=0,1,2, \ldots$,

$$
\begin{aligned}
f_{Y}(y)=\int_{0}^{\infty} f_{Y \mid X}(y \mid x) f_{X}(x) d x & =\int_{0}^{\infty} \frac{e^{-x} x^{y}}{y!} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} d x \\
& =\frac{\beta^{\alpha}}{y!\Gamma(\alpha)} \int_{0}^{\infty} x^{y+\alpha-1} e^{-(\beta+1) x} d x \\
& =\frac{\beta^{\alpha}}{y!\Gamma(\alpha)} \frac{\Gamma(y+\alpha)}{(\beta+1)^{y+\alpha}}=\frac{\Gamma(y+\alpha)}{\Gamma(y+1) \Gamma(\alpha)} \theta^{y}(1-\theta)^{\alpha}
\end{aligned}
$$

where $\theta=1 /(\beta+1)$. Hence Y has a negative-binomial type distribution, with parameters $\alpha>0$ and θ where $0<\theta<1$.
(ii) For $y>0$,

$$
\begin{aligned}
f_{Y}(y)=\int_{0}^{\infty} f_{Y \mid X}(y \mid x) f_{X}(x) d x & =\int_{0}^{\infty} x e^{-x y} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} d x \\
& =\frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} x^{\alpha+1-1} e^{-(y+\beta) x} d x \\
& =\frac{\beta^{\alpha}}{\Gamma(\alpha)} \frac{\Gamma(\alpha+1)}{(y+\beta)^{\alpha+1}}=\frac{(\alpha+1) \beta^{\alpha}}{(y+\beta)^{\alpha+1}}
\end{aligned}
$$

Hence Y has a Pareto type distribution (see formula sheet), with parameters $\alpha, \beta>0$.
(iii) For $0 \leq y \leq n$,

$$
\begin{aligned}
f_{Y}(y)=\int_{0}^{1} f_{Y \mid X}(y \mid x) f_{X}(x) d x & =\int_{0}^{1}\binom{n}{y} x^{y}(1-x)^{n-y} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} d x \\
& =\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \int_{0}^{1} x^{y+\alpha-1}(1-x)^{n-y+\beta-1} d x \\
& =\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \frac{\Gamma(y+\alpha) \Gamma(n-y+\beta)}{\Gamma(n+\alpha+\beta)}
\end{aligned}
$$

2 In the mixture model, then in the continuous case,

$$
\begin{aligned}
E_{f_{Y}}[Y] & =\int y f_{Y}(y) d y=\int y\left\{\sum_{k=1}^{K} \pi_{k} f_{k}\left(y \mid \theta_{k}\right)\right\} d y \\
& =\sum_{k=1}^{K} \pi_{k}\left\{\int y f_{k}\left(y \mid \theta_{k}\right) d y\right\}=\sum_{k=1}^{K} \pi_{k} \mu_{k}
\end{aligned}
$$

as required. An identical calculation reveals that

$$
M_{Y}(t)=\sum_{k=1}^{K} \pi_{k} M_{k}\left(t ; \theta_{k}\right)
$$

where $M_{k}\left(t ; \theta_{k}\right)$ is the mgf for $f_{k}\left(y \mid \theta_{k}\right)$, for $k=1, \ldots, K$.

3 The conditional distribution of X is discrete on $\{0,1\}$. By the definition of conditional probability (or by Bayes Theorem)

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)} \propto f_{Y \mid X}(y \mid x) f_{X}(x)
$$

Now for $x=0$,

$$
f_{Y \mid X}(y \mid 0)=f_{1}(y)=I_{\{0\}}(y) \quad f_{X}(0)=\pi_{1}
$$

and for $x=1$,

$$
f_{Y \mid X}(y \mid 1)=f_{2}(y)=\frac{e^{-y^{2} / 2}}{\sqrt{2 \pi}} \quad f_{X}(1)=1-\pi_{1}
$$

say, using π_{1} to distinguish this probability from the constant π. Then for $x=0$

$$
f_{X \mid Y}(0 \mid 0)=\frac{\pi_{1}}{\pi_{1}+\left(1-\pi_{1}\right) e^{-y^{2} / 2} / \sqrt{2 \pi}}
$$

and for $x=1$

$$
f_{X \mid Y}(1 \mid 0)=\frac{\left(1-\pi_{1}\right) e^{-y^{2} / 2} / \sqrt{2 \pi}}{\pi_{1}+\left(1-\pi_{1}\right) e^{-y^{2} / 2} / \sqrt{2 \pi}}
$$

4 With the correct skewness formula, we need to compute

$$
\varsigma=\frac{E_{f_{X}}\left[(X-\mu)^{3}\right]}{\sigma^{3}} \quad \kappa=\frac{E_{f_{X}}\left[(X-\mu)^{4}\right]}{\sigma^{4}}
$$

and hence need the first four central moments. If the mgf, M_{X}, exists, then it yields expressions for the first four moments after differentiation.
(i) For the standard Normal

$$
\begin{array}{rlrl}
M_{X}(t) & =e^{t^{2} / 2} & & \\
M_{X}^{(1)}(t) & =t e^{t^{2} / 2} \quad \therefore & M_{X}^{(1)}(0)=0 \\
M_{X}^{(2)}(t) & =\left(t^{2}+1\right) e^{t^{2} / 2} \quad \therefore & M_{X}^{(2)}(0)=1 \\
M_{X}^{(3)}(t) & =\left(t^{3}+3 t\right) e^{t^{2} / 2} \quad \therefore & M_{X}^{(3)}(0)=0 \\
M_{X}^{(4)}(t) & =\left(t^{4}+6 t^{2}+3\right) e^{t^{2} / 2} \quad \therefore \quad M_{X}^{(4)}(0)=3
\end{array}
$$

so $\mu=0$ and $\sigma^{2}=1$, and hence

$$
\begin{aligned}
& \varsigma=\frac{E_{f_{X}}\left[(X-\mu)^{3}\right]}{\sigma^{3}}=\frac{E_{f_{X}}\left[X^{3}\right]}{\sigma^{3}}=0 \\
& \kappa=\frac{E_{f_{X}}\left[(X-\mu)^{4}\right]}{\sigma^{4}}=\frac{E_{f_{X}}\left[X^{4}\right]}{\sigma^{4}}=3 .
\end{aligned}
$$

Note: some texts define the kurtosis for a general pmffpdf f_{X} as

$$
\begin{equation*}
\frac{E_{f_{X}}\left[(X-\mu)^{4}\right]}{\sigma^{4}}-3, \tag{1}
\end{equation*}
$$

as $\kappa=3$ for the standard Normal distribution. I will refer to the quantity in equation (1) as the excess kurtosis.
(ii) Throughout, we assume that all expectations used are finite. Note that, given $V=v$, $X=\sqrt{v} Z$ where $Z \sim N(0,1)$ such that Z and V are independent. Hence, using iterated expectation, we have

$$
\begin{aligned}
E_{f_{X}}\left[X^{r}\right] & =E_{f_{V}}\left[E_{f_{X \mid V}}\left[X^{r} \mid V=v\right]\right] \\
& =E_{f_{V}}\left[E_{f_{Z \mid V}}\left[v^{r / 2} Z^{r} \mid V=v\right]\right] \\
& =E_{f_{V}}\left[E_{f_{Z}}\left[Z^{r}\right] V^{r / 2}\right] \\
& =E_{f_{V}}\left[V^{r / 2}\right] E_{f_{Z}}\left[Z^{r}\right]
\end{aligned}
$$

the last line following by independence. Hence

$$
\begin{array}{lll}
r=1 & : & E_{f_{X}}[X]=E_{f_{V}}\left[V^{1 / 2}\right] E_{f_{Z}}[Z]=0 \\
r=2 & : & E_{f_{X}}\left[X^{2}\right]=E_{f_{V}}[V] E_{f_{Z}}[Z]=E_{f_{V}}[V] \\
r=3 & : & E_{f_{X}}\left[X^{3}\right]=E_{f_{V}}\left[V^{3 / 2}\right] E_{f_{Z}}\left[Z^{3}\right]=0 \\
r=4 & : & E_{f_{X}}\left[X^{4}\right]=E_{f_{V}}\left[V^{2}\right] E_{f_{Z}}\left[Z^{4}\right]=3 E_{f_{V}}\left[V^{2}\right]
\end{array}
$$

using the moments of a standard normal rv from above. Hence, as $\mu=0$, and

$$
\sigma^{2}=E_{f_{X}}\left[X^{2}\right]=E_{f_{V}}[V]
$$

we have

$$
\varsigma=\frac{E_{f_{X}}\left[X^{3}\right]}{\sigma^{3}}=0 \quad \kappa=\frac{E_{f_{X}}\left[X^{4}\right]}{\sigma^{4}}=\frac{3 E_{f_{V}}\left[V^{2}\right]}{\left\{E_{f_{V}}[V]\right\}^{2}}
$$

Note that, unless V has a distribution with variance zero (which occurs if V has a degenerate distribution, $P[V=c]=1$ for some c), $\kappa>3$ (by Jensen's Inequality), so the scale mixture has a kurtosis value greater than that of the Normal, that is, the distribution is leptokurtic compared to the Normal.
(iii) Consider the location mixture generated by

$$
X=Z+M
$$

where $Z \sim N(0,1)$, and M has some distribution f_{M} with finite moments, with Z and M independent. This is equivalent to the location mixture

$$
\begin{aligned}
X \mid M=m & \sim \phi(x-m) \\
M & \sim f_{M}(m)
\end{aligned}
$$

where ϕ is the standard normal pdf. Then $E_{f_{X}}[X]=E_{f_{M}}[M]=\mu_{M}$, say, and

$$
\begin{aligned}
\varsigma & =E_{f_{X}}\left[(X-\mu)^{3}\right]=E_{f_{X}}\left[\left(X-\mu_{M}\right)^{3}\right] \\
& =E_{f_{X, M}}\left[\left(X-M+M-\mu_{M}\right)^{3}\right] \\
& =E_{f_{X, M}}\left[(X-M)^{3}+3(X-M)^{2}\left(M-\mu_{M}\right)+3(X-M)\left(M-\mu_{M}\right)^{2}+\left(M-\mu_{M}\right)^{3}\right] \\
& \equiv E_{f_{Z}}\left[Z^{3}\right]+3 E_{f_{Z}}\left[Z^{2}\right] E_{f_{M}}\left[\left(M-\mu_{M}\right)\right]+3 E_{f_{Z}}[Z] E_{f_{M}}\left[\left(M-\mu_{M}\right)^{2}\right]+E_{f_{M}}\left[\left(M-\mu_{M}\right)^{3}\right] \\
& =0+3(1 \times 0)+3\left(0 \times \operatorname{Var}_{f_{M}}[M]\right)+E_{f_{M}}\left[\left(M-\mu_{M}\right)^{3}\right] \\
& =E_{f_{M}}\left[\left(M-\mu_{M}\right)^{3}\right]
\end{aligned}
$$

which is non-zero if $E_{f_{M}}\left[\left(M-\mu_{M}\right)^{3}\right] \neq 0$. Thus skewness in the distribution of M induces skewness in the distribution of X.

5 Compute by direct calculation, or using mgfs.
(i) $X \sim \operatorname{Bernoulli}(\theta)$: we have

$$
E_{f_{X}}[X]=(0 \times(1-\theta))+(1 \times \theta)=\theta
$$

Let $Z=X-\theta$. Then $P[Z=1-\theta]=\theta, P[Z=-\theta]=1-\theta$, so

$$
\begin{array}{lll}
r=1 & : & E_{f_{Z}}[Z]=((-\theta) \times(1-\theta))+((1-\theta) \times \theta)=0 \\
r=2 & : & E_{f_{Z}}\left[Z^{2}\right]=\left((-\theta)^{2} \times(1-\theta)\right)+\left((1-\theta)^{2} \times \theta\right)=\theta^{2}(1-\theta)+\theta(1-\theta)^{2} \\
r=3 & : & E_{f_{Z}}\left[Z^{3}\right]=\left((-\theta)^{3} \times(1-\theta)\right)+\left((1-\theta)^{3} \times \theta\right)=-\theta^{3}(1-\theta)+\theta(1-\theta)^{3} \\
r=4 & : & E_{f_{Z}}\left[Z^{4}\right]=\left((-\theta)^{4} \times(1-\theta)\right)+\left((1-\theta)^{4} \times \theta\right)=\theta^{4}(1-\theta)+\theta(1-\theta)^{4} .
\end{array}
$$

Thus for X, the skewness is

$$
\varsigma=\frac{E_{f_{X}}\left[(X-\mu)^{3}\right]}{\sigma^{3}}=\frac{E_{f_{X}}\left[Z^{3}\right]}{\left\{E_{f_{X}}\left[Z^{2}\right]\right\}^{3 / 2}}=\frac{-\theta^{3}(1-\theta)+\theta(1-\theta)^{3}}{\left\{\theta^{2}(1-\theta)+\theta(1-\theta)^{2}\right\}^{3 / 2}}=\frac{(1-2 \theta)}{\{\theta(1-\theta)\}^{1 / 2}}
$$

and the kurtosis is

$$
\kappa=\frac{E_{f_{X}}\left[(X-\mu)^{4}\right]}{\sigma^{2}}=\frac{E_{f_{X}}\left[Z^{4}\right]}{\left\{E_{f_{X}}\left[Z^{2}\right]\right\}^{2}}=\frac{\theta^{4}(1-\theta)+\theta(1-\theta)^{4}}{\left\{\theta^{2}(1-\theta)+\theta(1-\theta)^{2}\right\}^{4}}=\frac{\theta^{3}+(1-\theta)^{3}}{\{\theta(1-\theta)\}^{3}}
$$

(ii) If $X \sim \operatorname{Poisson}(\lambda), E_{f_{X}}[X]=\operatorname{Var}_{f_{X}}[X]=\lambda$, and $M_{X}(t)=\exp \left\{\lambda\left(e^{t}-1\right)\right\}$. Let $Z=X-\lambda$, so that

$$
M_{Z}(t)=e^{-\lambda t} M_{X}(t)=\exp \left\{\lambda\left(e^{t}-t-1\right)\right\}
$$

and

$$
M_{Z}(t)=\sum_{r=0}^{\infty} \frac{\lambda^{r}}{r!}\left(\frac{t^{2}}{2}+\frac{t^{3}}{6}+\frac{t^{4}}{24}+\cdots\right)^{r}=\sum_{r=0}^{\infty} \frac{a_{r}}{r!} t^{r} .
$$

We require the coefficients a_{r} for $r=1,2,3$ and 4 . Sufficient terms in the expansion can be obtained from the expansion of the first two terms

$$
\lambda\left(\frac{t^{2}}{2}+\frac{t^{3}}{6}+\frac{t^{4}}{24}\right)+\frac{\lambda^{2}}{2}\left(\frac{t^{2}}{2}+\frac{t^{3}}{6}+\frac{t^{4}}{24}\right)^{2}=\lambda\left(\frac{t^{2}}{2}+\frac{t^{3}}{6}+\frac{t^{4}}{24}\right)+\frac{\lambda^{2}}{2}\left(\frac{t^{4}}{4}+\frac{t^{5}}{6}+\frac{t^{6}}{36}+\cdots\right)
$$

a_{1} : No term in t in the expansion. Thus $E_{f_{Z}}[Z]=0$.
$a_{2}:$ Term in t^{2} in the expansion has coefficient $\lambda / 2$. Thus $E_{f_{Z}}\left[Z^{2}\right]=\lambda$.
$a_{3}:$ Term in t^{3} in the expansion has coefficient $\lambda / 6$. Thus $E_{f_{Z}}\left[Z^{3}\right]=\lambda$.
$a_{4}:$ Term in t^{4} in the expansion has coefficient $\lambda / 24+\lambda^{2} / 8$. Thus $E_{f_{Z}}\left[Z^{4}\right]=\lambda+3 \lambda^{2}$.
Thus for X, the skewness is

$$
\varsigma=\frac{E_{f_{X}}\left[(X-\mu)^{3}\right]}{\sigma^{3}}=\frac{E_{f_{Z}}\left[Z^{3}\right]}{\left\{E_{f_{Z}}\left[Z^{2}\right]\right\}^{3 / 2}}=\frac{\lambda}{\lambda^{3 / 2}}=\lambda^{-1 / 2}
$$

and the kurtosis is

$$
\kappa=\frac{E_{f_{X}}\left[(X-\mu)^{4}\right]}{\sigma^{2}}=\frac{E_{f_{Z}}\left[Z^{4}\right]}{\left\{E_{f_{Z}}\left[Z^{2}\right]\right\}^{2}}==\frac{\lambda+3 \lambda^{2}}{\lambda^{2}}=3+\frac{1}{\lambda}
$$

(iii) If $X \sim \operatorname{Gamma}(\alpha, \beta)$, we consider the standard case $Y \sim \operatorname{Gamma}(\alpha, 1)$, and deduce the results from the relationship $X=Y / \beta$. Now,

$$
M_{Y}(t)=\left(\frac{1}{1-t}\right)^{\alpha}=1+\alpha t+\frac{\alpha(\alpha+1)}{2} t^{2}+\frac{\alpha(\alpha+1)(\alpha+2)}{6} t^{3}+\frac{\alpha(\alpha+1)(\alpha+2)(\alpha+3)}{24} t^{4}+\cdots
$$

so if $Z=Y-E_{f_{Y}}[Y]=Y-\alpha$, then

$$
M_{Z}(t)=e^{-\alpha t}\left[1+\alpha t+\frac{\alpha(\alpha+1)}{2} t^{2}+\frac{\alpha(\alpha+1)(\alpha+2)}{6} t^{3}+\frac{\alpha(\alpha+1)(\alpha+2)(\alpha+3)}{24} t^{4}+\cdots\right] .
$$

We have the results by expanding the exponential, multiplying and collecting terms. We need the first four terms, so it is sufficient to expand the exponential to

$$
1-\alpha t+\frac{\alpha^{2}}{2} t^{2}-\frac{\alpha^{3}}{6} t^{3}+\frac{\alpha^{4}}{24} t^{4}
$$

and multiply out. Thus
a_{1} : No term in t in the expansion, as all cancel. Thus $E_{f_{Z}}[Z]=0$.
$a_{2}:$ Term in t^{2} in the expansion has coefficient

$$
\frac{\alpha(\alpha+1)}{2}-\alpha^{2}+\frac{\alpha^{2}}{2}=\frac{\alpha}{2}
$$

Thus $E_{f_{Z}}\left[Z^{2}\right]=\alpha$.
$a_{3}:$ Term in t^{3} in the expansion has coefficient

$$
\frac{\alpha(\alpha+1)(\alpha+2)}{6}-\frac{\alpha^{2}(\alpha+1)}{2}+\frac{\alpha^{3}}{2}-\frac{\alpha^{3}}{6}=\frac{\alpha}{3}
$$

Thus $E_{f_{Z}}\left[Z^{3}\right]=2 \alpha$.
a_{4} : Term in t^{4} in the expansion has coefficient

$$
\frac{\alpha(\alpha+1)(\alpha+2)(\alpha+3)}{24}-\frac{\alpha^{2}(\alpha+1)(\alpha+2)}{6}+\frac{\alpha^{3}(\alpha+1)}{4}-\frac{\alpha^{4}}{6}+\frac{\alpha^{4}}{24}=\frac{3 \alpha(\alpha+2)}{24}
$$

Thus $E_{f_{Z}}\left[Z^{4}\right]=3 \alpha(\alpha+2)$.
Hence

$$
\begin{aligned}
& E_{f_{Z}}\left[Z^{2}\right]=\alpha \\
& E_{f_{Z}}\left[Z^{3}\right]=2 \alpha \\
& E_{f_{Z}}\left[Z^{4}\right]=3 \alpha(\alpha+2)
\end{aligned}
$$

and thus for Y, the skewness is

$$
\varsigma=\frac{E_{f_{Y}}\left[(Y-\alpha)^{3}\right]}{\sigma^{3}}=\frac{E_{f_{Z}}\left[Z^{3}\right]}{\left\{E_{f_{Z}}\left[Z^{2}\right]\right\}^{3 / 2}}=\frac{2 \alpha}{\alpha^{3 / 2}}=\frac{2}{\alpha^{1 / 2}}
$$

and the kurtosis is

$$
\kappa=\frac{E_{f_{Y}}\left[(Y-\alpha)^{4}\right]}{\sigma^{2}}=\frac{E_{f_{Z}}\left[Z^{4}\right]}{\left\{E_{f_{Z}}\left[Z^{2}\right]\right\}^{2}}=\frac{3 \alpha(\alpha+2)}{\alpha^{2}}=\frac{3(\alpha+2)}{\alpha}=3+\frac{6}{\alpha}
$$

Now

$$
E_{f_{Y}}\left[(Y-\alpha)^{r}\right]=\beta^{r} E_{f_{Y}}\left[(X-\alpha / \beta)^{r}\right]=\beta^{r} E_{f_{Y}}\left[(X-\mu)^{r}\right]
$$

where μ is the expectation of X. Thus the skewness and kurtosis of X are identical to the skewness and kurtosis of Y, as the factors involving β cancel.

