## MATH 556-EXERCISES 2: SOLUTIONS

1 We have $f_{R}(r)=6 r(1-r)$, for $0<r<1$, and hence

$$
F_{R}(r)=r^{2}(3-2 r) \quad 0<r<1
$$

with the usual cdf behaviour outside of this range.

- Circumference: $Y=2 \pi R$, so $\mathbb{Y}=(0,2 \pi)$, and from first principles, for $y \in \mathbb{Y}$,

$$
\begin{aligned}
F_{Y}(y) & =\mathrm{P}[Y \leq y]=\mathrm{P}[2 \pi R \leq y]=\mathrm{P}[R \leq y / 2 \pi]=F_{R}(y / 2 \pi)=\frac{3 y^{2}}{4 \pi^{2}}-\frac{2 y^{3}}{8 \pi^{3}} \\
\Longrightarrow f_{Y}(y) & =\frac{6 y}{8 \pi^{3}}(2 \pi-y) \quad 0<y<2 \pi
\end{aligned}
$$

- Area: $Z=\pi R^{2}$, so $\mathbb{Z}=(0, \pi)$, and from first principles, for $z \in \mathbb{Z}$, recalling that $f_{R}$ is only positive when $0<z<\pi$,

$$
\begin{aligned}
F_{Z}(z) & =\mathrm{P}[Z \leq z]=\mathrm{P}\left[\pi R^{2} \leq z\right]=\mathrm{P}[R \leq \sqrt{z / \pi}]=F_{R}(z / 2 \pi)=\frac{3 z}{\pi}-2\left\{\frac{z}{\pi}\right\}^{3 / 2} \\
\Longrightarrow f_{Z}(z) & =3 \pi^{-3 / 2}(\sqrt{\pi}-\sqrt{z}) \quad 0<z<\pi .
\end{aligned}
$$

2 If $\mathbb{X}^{(2)}=(0,1) \times(0,1)$ is the (joint) range of vector random variable $(X, Y)$. We have

$$
f_{X, Y}(x, y)=c x(1-y) \quad 0<x<1,0<y<1
$$

so that

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y) \quad \text { and } \quad \mathbb{X}^{(2)}=\mathbb{X} \times \mathbb{Y}
$$

where $\mathbb{X}$ and $\mathbb{Y}$ are the ranges of $X$ and $Y$ respectively, and

$$
\begin{equation*}
f_{X}(x)=c_{1} x \quad \text { and } \quad f_{Y}(y)=c_{2}(1-y) \tag{1}
\end{equation*}
$$

for some constants satisfying $c_{1} c_{2}=c$. Hence, the two conditions for independence are satisfied in (1), and $X$ and $Y$ are independent.

Secondly, we must have

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1 \quad c^{-1}=\int_{0}^{1} \int_{0}^{1} x(1-y) d x d y=1
$$

and as

$$
\int_{0}^{1} \int_{0}^{1} x(1-y) d x d y=\left\{\int_{0}^{1} x d x\right\}\left\{\int_{0}^{1}(1-y) d y\right\}=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}
$$

we have $c=4$.
Finally, we have $A=\{(x, y): 0<x<y<1\}$, and hence, recalling that the joint density is only non-zero when $x<y$, we first fix a $y$ and integrate $d x$ on the range $(0, y)$, and then integrate $d y$ on the range $(0,1)$, that is

$$
\begin{aligned}
P[X<Y] & =\iint_{A} f_{X, Y}(x, y) d x d y=\int_{0}^{1}\left\{\int_{0}^{y} 4 x(1-y) d x\right\} d y \\
& =\int_{0}^{1}\left\{\int_{0}^{y} x d x\right\} 4(1-y) d y=\int_{0}^{1} 2 y^{2}(1-y) d y=\left[\frac{2}{3} y^{3}-\frac{1}{2} y^{4}\right]_{0}^{1}=\frac{1}{6}
\end{aligned}
$$

3 First sketch the support of the density; this will make it clear that the boundaries of the support are different for $0<y \leq 1$ and $y>1$.
(i) The marginal distributions are given by

$$
\begin{aligned}
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y=\int_{1 / x}^{x} \frac{1}{2 x^{2}} y d y=\frac{1}{2 x^{2}}(\log x-\log (1 / x))=\frac{\log x}{x^{2}} \quad 1 \leq x \\
& f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x= \begin{cases}\int_{1 / y}^{\infty} \frac{1}{2 x^{2} y} d x=\frac{1}{2} & 0 \leq y \leq 1 \\
\int_{y}^{\infty} \frac{1}{2 x^{2} y} d x=\frac{1}{2 y^{2}} & 1 \leq y\end{cases}
\end{aligned}
$$

(ii) Conditionals:

$$
\begin{aligned}
& f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}= \begin{cases}\frac{1}{x^{2} y} & 1 / y \leq x \text { if } 0 \leq y \leq 1 \\
\frac{y}{x^{2}} & y \leq x \text { if } 1 \leq y\end{cases} \\
& f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{1}{2 y \log x} \quad 1 / x \leq y \leq x \text { if } x \geq 1
\end{aligned}
$$

(iii) Marginal expectation of $Y$;

$$
E_{f_{Y}}[Y]=\int-\infty \infty y f_{Y}(y) d y=\int_{0}^{1} \frac{y}{2} d y+\int_{1}^{\infty} \frac{1}{2 y} d y=\infty
$$

as the second integral is divergent.
4 (i) We set

$$
\begin{aligned}
& U=X / Y \\
& V=-\log (X Y)
\end{aligned} \Longleftrightarrow \Longleftrightarrow \begin{aligned}
& X=U^{1 / 2} e^{-V / 2} \\
& Y=U^{-1 / 2} e^{-V / 2}
\end{aligned}
$$

note that, as $X$ and $Y$ lie in $(0,1)$ we have $X Y<X / Y$ and $X Y<Y / X$, giving constraints $e^{-V}<U$ and $e^{-V}<1 / U$, so that $0<e^{-V}<\min \{U, 1 / U\}$. The Jacobian of the transformation is

$$
|J(u, v)|=\left|\begin{array}{cc}
\frac{u^{-1 / 2} e^{-v / 2}}{2} & -\frac{u^{1 / 2} e^{-v / 2}}{2} \\
-\frac{u^{-3 / 2} e^{-v / 2}}{2} & -\frac{u^{-1 / 2} e^{-v / 2}}{2}
\end{array}\right|=u^{-1} e^{-v} / 2 .
$$

Hence

$$
f_{U, V}(u, v)=u^{-1} e^{-v} / 2 \quad 0<e^{-v}<\min \{u, 1 / u\}, u>0
$$

The corresponding marginals are given below: let $g(y)=-\log (\min \{u, 1 / u\})$, then

$$
\begin{aligned}
& f_{U}(u)=\int_{-\infty}^{\infty} f_{U, V}(u, v) d v=\int_{g(y)}^{\infty} \frac{e^{-v}}{2 u} d v=\left[-\frac{e^{-v}}{2 u}\right]_{g(y)}^{\infty}=\frac{\min \{u, 1 / u\}}{2 u} \quad u>0 \\
& f_{V}(v)=\int_{-\infty}^{\infty} f_{U, V}(u, v) d u=\int_{e^{-v}}^{e^{v}} \frac{e^{-v}}{2 u} d u=\left[\frac{\log u}{2} e^{-v}\right]_{e^{-v}}^{e^{v}}=v e^{-v} \quad v>0
\end{aligned}
$$

(ii) Now let

$$
\begin{aligned}
& V=X+Y \\
& Z=X-Y
\end{aligned} \Longleftrightarrow \quad \begin{aligned}
& X=\frac{V+Z}{2} \\
& Z=\frac{V-Z}{2}
\end{aligned}
$$

and the Jacobian of the transformation is $1 / 2$. The transformed variables take values on the square $A$ in the $(V, Z)$ plane with corners at $(0,0),(1,1),(2,0)$ and $(1,-1)$ bounded by the lines $z=-v, z=2-v, z=v$ and $z=v-2$. Then

$$
f_{V, Z}(v, z)=\frac{1}{2} \quad(v, z) \in A
$$

and zero otherwise (sketch the square $A$ ). Hence, integrating in horizontal strips in the $(V, Z)$ plane,

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{V, Z}(v, z) d v=\left\{\begin{array}{cc}
\int_{-z}^{2+z} \frac{1}{2} d v=1+z & -1<z \leq 0 \\
\int_{z}^{2-z} \frac{1}{2} d v=1-z & 0<z<1
\end{array}\right.
$$

5 We have $K_{X}(t)=\log M_{X}(t)$, hence

$$
K_{X}^{(1)}(t)=\frac{d}{d s}\left\{K_{X}(t)\right\}_{s=t}=\frac{d}{d s}\left\{\log M_{X}(t)\right\}_{s=t}=\frac{M_{X}^{(1)}(t)}{M_{X}(t)} \Longrightarrow K_{X}^{(1)}(0)=\frac{M_{X}^{(1)}(0)}{M_{X}(0)}=E_{f_{X}}[X]
$$

as $M_{X}(0)=1$. Similarly

$$
K_{X}^{(2)}(t)=\frac{M_{X}(t) M_{X}^{(2)}(t)-\left\{M_{X}^{(1)}(t)\right\}^{2}}{\left\{M_{X}(t)\right\}^{2}}
$$

and hence

$$
K_{X}^{(2)}(0)=\frac{M_{X}(0) M_{X}^{(2)}(0)-\left\{M_{X}^{(1)}(0)\right\}^{2}}{\left\{M_{X}(0)\right\}^{2}}=E_{f_{X}}\left[X^{2}\right]-\left\{E_{f_{X}}[X]\right\}^{2}
$$

and hence $K_{X}^{(2)}(0)=\operatorname{Var}_{f_{X}}[X]$
6 (i) Put $U=X / Y$ and $V=Y$; the inverse transformations are therefore $X=U V$ and $Y=$ $V$. In terms of the multivariate transformation theorem, we have transformation functions defined by

$$
\begin{array}{ll}
g_{1}\left(t_{1}, t_{2}\right)=t_{1} / t_{2} & g_{1}^{-1}\left(t_{1}, t_{2}\right)=t_{1} t_{2} \\
g_{2}\left(t_{1}, t_{2}\right)=t_{2} & g_{2}^{-1}\left(t_{1}, t_{2}\right)=t_{2}
\end{array}
$$

and the Jacobian of the transformation is given by

$$
|J(u, v)|=\left|\begin{array}{ll}
v & u \\
0 & 1
\end{array}\right|=|v|
$$

and hence

$$
f_{U, V}(u, v)=f_{X, Y}(u v, v)|v|=\left(\frac{1}{2 \pi}\right) \exp \left\{-\frac{1}{2}\left(u^{2} v^{2}+v^{2}\right\}|v| \quad(u, v) \in \mathbb{R}^{2}\right.
$$

and zero otherwise, and so, for any real $u$,

$$
\begin{aligned}
f_{U}(u)=\int_{-\infty}^{\infty} f_{U, V}(u, v) d v & =\int_{-\infty}^{\infty}\left(\frac{1}{2 \pi}\right) \exp \left\{-\frac{1}{2}\left(u^{2} v^{2}+v^{2}\right\}|v| d v\right. \\
& =\left(\frac{1}{\pi}\right) \int_{0}^{\infty} v \exp \left\{-\frac{v^{2}}{2}\left(1+u^{2}\right)\right\} d v \\
& =\left(\frac{1}{\pi}\right)\left[-\frac{1}{\left(1+u^{2}\right)} \exp \left\{-\frac{v^{2}}{2}\left(1+u^{2}\right)\right\}\right]_{0}^{\infty}=\frac{1}{\pi\left(1+u^{2}\right)}
\end{aligned}
$$

with the final step following by direct integration. Thus $U$ has a Cauchy distribution.
(ii) Now put $T=X / \sqrt{S / \nu}$ and $R=S$; the inverse transformations are therefore $X=T \sqrt{R / \nu}$ and $S=R$. In terms of the multivariate transformation theorem, we have transformation functions from $(X, S) \rightarrow(T, R)$ defined by

$$
\begin{array}{ll}
g_{1}\left(t_{1}, t_{2}\right)=t_{1} / \sqrt{t_{2} / \nu} & g_{1}^{-1}\left(t_{1}, t_{2}\right)=t_{1} \sqrt{t_{2} / \nu} \\
g_{2}\left(t_{1}, t_{2}\right)=t_{2} & g_{2}^{-1}\left(t_{1}, t_{2}\right)=t_{2}
\end{array}
$$

and the Jacobian of the transformation is given by

$$
|J(t, r)|=\left|\begin{array}{cc}
\sqrt{\frac{r}{\nu}} & \frac{t}{2 \sqrt{r \nu}} \\
0 & 1
\end{array}\right|=\left|\sqrt{\frac{r}{\nu}}\right|=\sqrt{\frac{r}{\nu}}
$$

and hence

$$
f_{T, R}(t, r)=f_{X, S}\left(t \sqrt{\frac{r}{\nu}}, r\right) \sqrt{\frac{r}{\nu}}=f_{X}\left(t \sqrt{\frac{r}{\nu}}\right) f_{S}(r) \sqrt{\frac{r}{\nu}} \quad t \in \mathbb{R}, s \in \mathbb{R}^{+}
$$

and zero otherwise, and so, for any real $t$,

$$
\begin{aligned}
f_{T}(t) & =\int_{-\infty}^{\infty} f_{T, R}(t, r) d r \\
& =\int_{0}^{\infty}\left(\frac{1}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{r t^{2}}{2 \nu}\right\} \frac{(1 / 2)^{(\nu / 2)}}{\Gamma(\nu / 2)} r^{\nu / 2-1} e^{-r / 2} \sqrt{\frac{r}{\nu}} d r \\
& =\left(\frac{1}{2 \pi}\right)^{1 / 2} \frac{(1 / 2)^{(\nu / 2)}}{\Gamma(\nu / 2)} \frac{1}{\sqrt{\nu}} \int_{0}^{\infty} r^{(\nu+1) / 2-1} \exp \left\{-\frac{r}{2}\left(1+\frac{t^{2}}{\nu}\right)\right\} d r \\
& =\left(\frac{1}{2 \pi}\right)^{1 / 2} \frac{(1 / 2)^{(\nu / 2)}}{\sqrt{\nu} \Gamma(\nu / 2)}\left(1+\frac{t^{2}}{\nu}\right)^{-(\nu+1) / 2} \int_{0}^{\infty} z^{(\nu+1) / 2-1} \exp \left\{-\frac{z}{2}\right\} d z
\end{aligned}
$$

after setting

$$
z=r\left(1+\frac{t^{2}}{\nu}\right) .
$$

Hence

$$
f_{T}(t)=\left(\frac{1}{2 \pi}\right)^{1 / 2} \frac{(1 / 2)^{(\nu / 2)}}{\sqrt{\nu} \Gamma(\nu / 2)}\left(1+\frac{t^{2}}{\nu}\right)^{-(\nu+1) / 2} \frac{\Gamma((\nu+1) / 2+1)}{(1 / 2)^{(\nu+1) / 2}}
$$

as the integrand is proportional to a Gamma pdf. Thus

$$
f_{T}(t)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)}\left(\frac{1}{\pi \nu}\right)^{1 / 2} \frac{1}{\left(1+t^{2} / \nu\right)^{(\nu+1) / 2}}
$$

which is the $\operatorname{Student}(\nu)$ density.
(iii) We have that $X \mid Y=y \sim N\left(0, y^{-1}\right)$ and $Y \sim \operatorname{Gamma}(\nu / 2, \nu / 2)$. Now, we have

$$
f_{X, Y}(x, y)=f_{X \mid Y}(x \mid y) f_{Y}(y) \quad x \in \mathbb{R}, y \in \mathbb{R}^{+}
$$

and zero otherwise, and so, for any real $x$,

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y \\
& =\int_{0}^{\infty} \sqrt{\frac{y}{2 \pi}} \exp \left\{-\frac{y x^{2}}{2}\right\} \frac{\left(\frac{\nu}{2}\right)^{\nu / 2}}{\Gamma\left(\frac{\nu}{2}\right)} y^{\nu / 2-1} e^{-\nu y / 2} d y \\
& =\frac{1}{\sqrt{2 \pi}} \frac{\left(\frac{\nu}{2}\right)^{\nu / 2}}{\Gamma\left(\frac{\nu}{2}\right)} \int_{0}^{\infty} y^{(\nu+1) / 2-1} \exp \left\{-\frac{y}{2}\left(\nu+x^{2}\right)\right\} d y \\
& =\frac{1}{\sqrt{2 \pi}} \frac{\left(\frac{\nu}{2}\right)^{\nu / 2}}{\Gamma\left(\frac{\nu}{2}\right)} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\left(\frac{1}{2}\left(\nu+x^{2}\right)\right)^{(\nu+1) / 2}}
\end{aligned}
$$

as the integrand is proportional to a Gamma pdf. Therefore $f_{X}$ is given by

$$
f_{X}(x)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)}\left(\frac{1}{\pi \nu}\right)^{1 / 2} \frac{1}{\left(1+x^{2} / \nu\right)^{(\nu+1) / 2}}
$$

which is again the $\operatorname{Student}(\nu)$ density.

Exercise 6 give the two alternative ways of specifying the Student-t distribution, either as a function of independent Normal and Gamma/Chi-squared variables, or as the marginal obtained by "scale-mixing" a Normal distribution by a Gamma distribution (that is, rather than having a fixed variance $\sigma^{2}=1 / Y$; we regard $Y$ as a random variable having a Gamma distribution, so that ( $X, Y$ ) have a joint distribution

$$
f_{X, Y}(x, y)=f_{X \mid Y}(x \mid y) f_{Y}(y)
$$

from which we calculate $f_{X}(x)$ by integration.

