
MATH 556 - EXERCISES 2: SOLUTIONS

1 We have fR(r) = 6r(1− r), for 0 < r < 1, and hence

FR(r) = r2(3− 2r) 0 < r < 1

with the usual cdf behaviour outside of this range.

• Circumference: Y = 2πR, so Y = (0, 2π), and from first principles, for y ∈ Y,

FY (y) = P[ Y ≤ y ] = P[ 2πR ≤ y ] = P[ R ≤ y/2π ] = FR(y/2π) =
3y2

4π2
− 2y3

8π3

=⇒ fY (y) =
6y

8π3
(2π − y) 0 < y < 2π

• Area: Z = πR2, so Z = (0, π), and from first principles, for z ∈ Z, recalling that fR is only
positive when 0 < z < π,

FZ(z) = P[ Z ≤ z ] = P[ πR2 ≤ z ] = P[ R ≤
√

z/π ] = FR(z/2π) =
3z

π
− 2

{ z

π

}3/2

=⇒ fZ(z) = 3π−3/2(
√

π −√z) 0 < z < π.

2 If X(2)=(0, 1)× (0, 1) is the (joint) range of vector random variable (X, Y ). We have

fX,Y (x, y) = cx(1− y) 0 < x < 1, 0 < y < 1

so that
fX,Y (x, y) = fX(x)fY (y) and X(2) = X× Y

where X and Y are the ranges of X and Y respectively, and

fX(x) = c1x and fY (y) = c2(1− y) (1)

for some constants satisfying c1c2 = c. Hence, the two conditions for independence are satisfied
in (1), and X and Y are independent.

Secondly, we must have
∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y) dxdy = 1 c−1 =

∫ 1

0

∫ 1

0
x(1− y) dxdy = 1

and as ∫ 1

0

∫ 1

0
x(1− y) dxdy =

{∫ 1

0
x dx

}{∫ 1

0
(1− y) dy

}
=

1
2
× 1

2
=

1
4

we have c = 4.

Finally, we have A = {(x, y) : 0 < x < y < 1}, and hence, recalling that the joint density is only
non-zero when x < y, we first fix a y and integrate dx on the range (0, y), and then integrate dy
on the range (0, 1), that is

P [ X < Y ] =
∫∫

A

fX,Y (x, y) dxdy =
∫ 1

0

{∫ y

0
4x(1− y) dx

}
dy

=
∫ 1

0

{∫ y

0
x dx

}
4(1− y) dy =

∫ 1

0
2y2(1− y) dy =

[
2
3
y3 − 1

2
y4

]1

0

=
1
6
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3 First sketch the support of the density; this will make it clear that the boundaries of the support
are different for 0 < y ≤ 1 and y > 1.

(i) The marginal distributions are given by

fX(x) =
∫ ∞

−∞
fX,Y (x, y) dy =

∫ x

1/x

1
2x2

y dy =
1

2x2
(log x− log(1/x)) =

log x

x2
1 ≤ x

fY (y) =
∫ ∞

−∞
fX,Y (x, y) dx =





∫ ∞

1/y

1
2x2y

dx =
1
2

0 ≤ y ≤ 1

∫ ∞

y

1
2x2y

dx =
1

2y2
1 ≤ y

(ii) Conditionals:

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=





1
x2y

1/y ≤ x if 0 ≤ y ≤ 1

y

x2
y ≤ x if 1 ≤ y

fY |X(y|x) =
fX,Y (x, y)

fX(x)
=

1
2y log x

1/x ≤ y ≤ x if x ≥ 1

(iii) Marginal expectation of Y ;

EfY
[ Y ] =

∫
−∞∞yfY (y) dy =

∫ 1

0

y

2
dy +

∫ ∞

1

1
2y

dy = ∞

as the second integral is divergent.

4 (i) We set
U = X/Y
V = − log(XY )

⇐⇒ X = U1/2e−V/2

Y = U−1/2e−V/2

note that, as X and Y lie in (0, 1) we have XY < X/Y and XY < Y/X , giving constraints
e−V < U and e−V < 1/U , so that 0 < e−V < min {U, 1/U}. The Jacobian of the transforma-
tion is

|J(u, v)| =

∣∣∣∣∣∣∣∣∣

u−1/2e−v/2

2
−u1/2e−v/2

2

−u−3/2e−v/2

2
−u−1/2e−v/2

2

∣∣∣∣∣∣∣∣∣
= u−1e−v/2.

Hence
fU,V (u, v) = u−1e−v/2 0 < e−v < min {u, 1/u} , u > 0

The corresponding marginals are given below: let g(y) = − log(min {u, 1/u}), then

fU (u) =
∫ ∞

−∞
fU,V (u, v) dv =

∫ ∞

g(y)

e−v

2u
dv =

[
−e−v

2u

]∞

g(y)

=
min {u, 1/u}

2u
u > 0

fV (v) =
∫ ∞

−∞
fU,V (u, v) du =

∫ ev

e−v

e−v

2u
du =

[
log u

2
e−v

]ev

e−v

= ve−v v > 0
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(ii) Now let

V = X + Y

Z = X − Y
⇐⇒

X =
V + Z

2

Y =
V − Z

2
and the Jacobian of the transformation is 1/2. The transformed variables take values on the
square A in the (V, Z) plane with corners at (0, 0), (1, 1), (2, 0) and (1,−1) bounded by the
lines z = −v, z = 2− v, z = v and z = v − 2. Then

fV,Z(v, z) =
1
2

(v, z) ∈ A

and zero otherwise (sketch the square A). Hence, integrating in horizontal strips in the
(V,Z) plane,

fZ(z) =
∫ ∞

−∞
fV,Z(v, z) dv =





∫ 2+z

−z

1
2

dv = 1 + z −1 < z ≤ 0

∫ 2−z

z

1
2

dv = 1− z 0 < z < 1

5 We have KX(t) = log MX(t), hence

K
(1)
X (t) =

d

ds
{KX(t)}s=t =

d

ds
{log MX(t)}s=t =

M
(1)
X (t)

MX(t)
=⇒ K

(1)
X (0) =

M
(1)
X (0)

MX(0)
= EfX

[ X ]

as MX(0) = 1. Similarly

K
(2)
X (t) =

MX(t)M (2)
X (t)−

{
M

(1)
X (t)

}2

{MX(t)}2

and hence

K
(2)
X (0) =

MX(0)M (2)
X (0)−

{
M

(1)
X (0)

}2

{MX(0)}2 = EfX
[ X2 ]− {EfX

[ X ]}2

and hence K
(2)
X (0) = V arfX

[ X ]

6 (i) Put U = X/Y and V = Y ; the inverse transformations are therefore X = UV and Y =
V . In terms of the multivariate transformation theorem, we have transformation functions
defined by

g1(t1, t2) = t1/t2 g−1
1 (t1, t2) = t1t2

g2(t1, t2) = t2 g−1
2 (t1, t2) = t2

and the Jacobian of the transformation is given by

|J(u, v)| =
∣∣∣∣∣∣

v u

0 1

∣∣∣∣∣∣
= |v|

and hence

fU,V (u, v) = fX,Y (uv, v) |v| =
(

1
2π

)
exp

{
−1

2
(u2v2 + v2

}
|v| (u, v) ∈ R2
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and zero otherwise, and so, for any real u,

fU (u) =
∫ ∞

−∞
fU,V (u, v) dv =

∫ ∞

−∞

(
1
2π

)
exp

{
−1

2
(u2v2 + v2

}
|v| dv

=
(

1
π

)∫ ∞

0
v exp

{
−v2

2
(1 + u2)

}
dv

=
(

1
π

)[
− 1

(1 + u2)
exp

{
−v2

2
(1 + u2)

}]∞

0

=
1

π(1 + u2)

with the final step following by direct integration. Thus U has a Cauchy distribution.

(ii) Now put T = X/
√

S/ν and R = S; the inverse transformations are therefore X = T
√

R/ν
and S = R. In terms of the multivariate transformation theorem, we have transformation
functions from (X, S) → (T, R) defined by

g1(t1, t2) = t1/
√

t2/ν g−1
1 (t1, t2) = t1

√
t2/ν

g2(t1, t2) = t2 g−1
2 (t1, t2) = t2

and the Jacobian of the transformation is given by

|J(t, r)| =

∣∣∣∣∣∣∣∣

√
r

ν

t

2
√

rν

0 1

∣∣∣∣∣∣∣∣
=

∣∣∣∣
√

r

ν

∣∣∣∣ =
√

r

ν

and hence

fT,R(t, r) = fX,S

(
t

√
r

ν
, r

) √
r

ν
= fX

(
t

√
r

ν

)
fS (r)

√
r

ν
t ∈ R, s ∈ R+

and zero otherwise, and so, for any real t,

fT (t) =
∫ ∞

−∞
fT,R(t, r) dr

=
∫ ∞

0

(
1
2π

)1/2

exp
{
−rt2

2ν

}
(1/2)(ν/2)

Γ(ν/2)
rν/2−1e−r/2

√
r

ν
dr

=
(

1
2π

)1/2 (1/2)(ν/2)

Γ(ν/2)
1√
ν

∫ ∞

0
r(ν+1)/2−1 exp

{
−r

2

(
1 +

t2

ν

)}
dr

=
(

1
2π

)1/2 (1/2)(ν/2)

√
ν Γ(ν/2)

(
1 +

t2

ν

)−(ν+1)/2 ∫ ∞

0
z(ν+1)/2−1 exp

{
−z

2

}
dz

after setting

z = r

(
1 +

t2

ν

)
.

Hence

fT (t) = =
(

1
2π

)1/2 (1/2)(ν/2)

√
ν Γ(ν/2)

(
1 +

t2

ν

)−(ν+1)/2 Γ((ν + 1)/2 + 1)
(1/2)(ν+1)/2
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as the integrand is proportional to a Gamma pdf. Thus

fT (t) =
Γ

(
ν + 1

2

)

Γ
(ν

2

)
(

1
πν

)1/2 1

(1 + t2/ν)(ν+1)/2

which is the Student(ν) density.

(iii) We have that X|Y = y ∼ N(0, y−1) and Y ∼ Gamma(ν/2, ν/2). Now, we have

fX,Y (x, y) = fX|Y (x|y)fY (y) x ∈ R, y ∈ R+

and zero otherwise, and so, for any real x,

fX(x) =
∫ ∞

−∞
fX,Y (x, y) dy

=
∫ ∞

0

√
y

2π
exp

{
−yx2

2

} (ν

2

)ν/2

Γ
(ν

2

) yν/2−1e−νy/2 dy

=
1√
2π

(ν

2

)ν/2

Γ
(ν

2

)
∫ ∞

0
y(ν+1)/2−1 exp

{
−y

2
(
ν + x2

)}
dy

=
1√
2π

(ν

2

)ν/2

Γ
(ν

2

)
Γ

(
ν + 1

2

)

(
1
2

(ν + x2)
)(ν+1)/2

as the integrand is proportional to a Gamma pdf. Therefore fX is given by

fX(x) =
Γ

(
ν + 1

2

)

Γ
(ν

2

)
(

1
πν

)1/2 1

(1 + x2/ν)(ν+1)/2

which is again the Student(ν) density.

Exercise 6 give the two alternative ways of specifying the Student-t distribution, either as a func-
tion of independent Normal and Gamma/Chi-squared variables, or as the marginal obtained by
“scale-mixing” a Normal distribution by a Gamma distribution (that is, rather than having a fixed
variance σ2 = 1/Y ; we regard Y as a random variable having a Gamma distribution, so that (X,Y )
have a joint distribution

fX,Y (x, y) = fX|Y (x|y)fY (y)

from which we calculate fX(x) by integration.
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