MATH 556 - PRACTICE EXAM QUESTIONS II SOLUTIONS

1. (a) Using properties of cfs, we have

$$
C_{T_{n}}(t)=\left\{e^{-|t|}\right\}^{n}=e^{-|n t|}
$$

Now using the scale transformation result for mgfs/cfs (given on Formula Sheet), we have that if $V=\lambda U$, then

$$
C_{V}(t)=C_{U}(\lambda t)
$$

we deduce that, in distribution, $T_{n}=n X$, where $X \sim$ Cauchy, so that, by the univariate transformation theorem,

$$
f_{T_{n}}(x)=f_{X}(x / n)|J(x)|=\frac{1}{\pi} \frac{1}{1+(x / n)^{2}} \frac{1}{n}=\frac{1}{\pi} \frac{n}{n^{2}+x^{2}}
$$

(b) From (a), we can deduce immediately that $\bar{X}_{n} \sim$ Cauchy for all n. Hence, using the Cauchy cdf,

$$
P\left[\left|\bar{X}_{n}\right|>\epsilon\right]=1-\frac{2}{\pi} \arctan (\epsilon) \nrightarrow 0 \quad \text { as } \quad n \longrightarrow \infty .
$$

and hence $\bar{X}_{n} \xrightarrow{p} 0$ as $n \longrightarrow \infty$.
(c) Many possible methods of solution; recall that the scale mixture formulation specifies a three level hierarchy in this case

LEVEL 3: $\alpha, \beta>0 \quad$ Fixed parameters
LEVEL 2 : $V \sim \operatorname{Gamma}(\alpha, \beta)$
LEVEL 1: $\quad X \mid V=v \sim \operatorname{Normal}(0, g(v))$
for some non-negative function $g($.$) . The marginal for X$ is thus

$$
f_{X}(x)=\int_{0}^{\infty} f_{X \mid V}(x \mid v) f_{V}(v) d v=\int_{0}^{\infty}\left(\frac{1}{2 \pi g(v)}\right)^{1 / 2} \exp \left\{-\frac{x^{2}}{2 g(v)}\right\} \frac{\beta^{\alpha}}{\Gamma(\alpha)} v^{\alpha-1} e^{-\beta v} d v
$$

We require the result of this calculation to be the Cauchy pdf. In order to integrate out v, it appears that we must make the integrand proportional to a Gamma pdf, and choosing $g(v)=v^{-1}$ makes this possible; ignoring constants, the integrand becomes

$$
v^{\alpha+1 / 2-1} \exp \left\{-\frac{v\left(2 \beta+x^{2}\right)}{2}\right\}
$$

which, on integration, yields a term proportional to

$$
\frac{\Gamma(\alpha+1 / 2)}{\left(2 \beta+x^{2}\right)^{\alpha+1 / 2}} .
$$

Hence choosing $\alpha=1 / 2, \beta=1 / 2$ yields a term proportional to the Cauchy pdf. Thus the Cauchy distribution is a scale mixture of a Normal density by a $\operatorname{Gamma}(1 / 2,1 / 2) \equiv \chi_{1}^{2}$ distribution, with "link" function $g(v)=v^{-1}$.
2. (a) Given a f_{X}, we construct a tilted version with tilt given parameter θ as follows; we consider

$$
f_{X \mid \theta}(x \mid \theta) \propto f_{X}(x) \exp \{\theta X\}
$$

in such a way so that the resulting function $f_{X \mid \theta}(x \mid \theta)$ is a valid pdf. Clearly this function is non-negative, and integrable if

$$
\int_{-\infty}^{\infty} f_{X}(x) \exp \{\theta x\} d x<\infty
$$

If this holds, then

$$
f_{X \mid \theta}(x \mid \theta)=\frac{f_{X}(x) \exp \{\theta X\}}{\int_{-\infty}^{\infty} f_{X}(x) \exp \{\theta x\} d x}=\frac{f_{X}(x) \exp \{\theta X\}}{M_{X}(\theta)}
$$

where M_{X} is the mgf corresponding to the original f_{X}. Finally, if $K_{X}(t)=\log M_{X}(t)$ is the corresponding cumulant generating function, then

$$
f_{X \mid \theta}(x \mid \theta)=f_{X}(x) \exp \left\{\theta X-K_{X}(\theta)\right\}
$$

This is a natural exponential family distribution in its canonical parameterization, that is,

$$
f_{X \mid \theta}(x \mid \theta)=h(x) c(\theta) \exp \{\theta X\}
$$

where $h(x)=f_{X}(x)$ and $c(\theta)=M_{X}(\theta)$. This computation can be generalized by considering the derivation with random variable $S=s(X)$ replacing X in the exponent, and M_{S} replacing M_{X}.
(b) If \mathcal{N} is given by

$$
\mathcal{N} \equiv\left\{\theta \in \mathbb{R}: K_{S}(\theta)=\log \left[\int e^{s(y) \theta} f_{Y}(y) d y\right]<\infty\right\}
$$

(i) $0 \in \mathcal{N}$ as f_{Y} is a valid pdf and hence integrable. Note that as $\operatorname{Var}_{f_{S}}[s(Y)]>0$, the distribution of $s(Y)$ is not degenerate, and hence \mathcal{N} contains elements other than zero.
(ii) For $0 \leq \alpha \leq 1$, we consider $\theta=\alpha \theta_{1}+(1-\alpha) \theta_{2}$. Then

$$
\begin{aligned}
\int e^{s(y) \theta} f_{Y}(y) d y & =\int \exp \left\{s(y)\left(\alpha \theta_{1}+(1-\alpha) \theta_{2}\right)\right\} f_{Y}(y) d y \\
& =\int \exp \left\{s(y) \alpha \theta_{1}\right\} \exp \left\{s(y)(1-\alpha) \theta_{2}\right\} f_{Y}(y) d y \\
& =E_{f_{Y}}\left[g_{1}\left(Y ; \theta_{1}\right)^{\alpha} g_{2}\left(Y ; \theta_{2}\right)^{1-\alpha}\right]
\end{aligned}
$$

say, where $g_{i}(y ; \theta)=\exp \left\{s(y) \theta_{i}\right\}$ for $i=1,2$. Now using Hölder's Inequality with $p=1 / \alpha, q=1 /(1-\alpha)$, we can deduce that

$$
\begin{gathered}
E_{f_{Y}}\left[g_{1}\left(Y ; \theta_{1}\right)^{\alpha} g_{2}\left(Y ; \theta_{2}\right)^{1-\alpha}\right] \leq E_{f_{Y}}\left[g_{1}\left(Y ; \theta_{1}\right)\right]^{\alpha} E_{f_{Y}}\left[g_{2}\left(Y ; \theta_{2}\right)\right]^{1-\alpha} \\
\int e^{s(y) \theta} f_{Y}(y) d y \leq E_{f_{Y}}\left[g_{1}\left(Y ; \theta_{1}\right)\right]^{\alpha} E_{f_{Y}}\left[g_{2}\left(Y ; \theta_{2}\right)\right]^{1-\alpha}<\infty
\end{gathered}
$$

as

$$
E_{f_{Y}}\left[g_{i}\left(Y ; \theta_{i}\right)\right]=\int \exp \left\{s(y) \theta_{i}\right\} f_{Y}(y) d y<\infty \quad i=1,2
$$

Hence $\theta \in \mathcal{N}$, and the set \mathcal{N} is convex.
(iii) We need to show that

$$
K_{S}\left(\alpha \theta_{1}+(1-\alpha) \theta_{2}\right) \leq \alpha K_{S}\left(\theta_{1}\right)+(1-\alpha) K_{S}\left(\theta_{2}\right)
$$

Now, let $\theta=\alpha \theta_{1}+(1-\alpha) \theta_{2}$. Then, using the notation from part (ii),

$$
\begin{aligned}
K_{S}(\theta) & =\log E_{f_{Y}}\left[g_{1}\left(Y ; \theta_{1}\right)^{\alpha} g_{2}\left(Y ; \theta_{2}\right)^{1-\alpha}\right] \\
& \leq \log \left\{E_{f_{Y}}\left[g_{1}\left(Y ; \theta_{1}\right)\right]^{\alpha} E_{f_{Y}}\left[g_{2}\left(Y ; \theta_{2}\right)\right]^{1-\alpha}\right\}
\end{aligned}
$$

using Hölder's Inequality again. Thus

$$
\begin{aligned}
K_{S}(\theta) & \leq \alpha \log E_{f_{Y}}\left[g_{1}\left(Y ; \theta_{1}\right)\right]+(1-\alpha) \log E_{f_{Y}}\left[g_{2}\left(Y ; \theta_{2}\right)\right] \\
& =\alpha K_{S}\left(\theta_{1}\right)+(1-\alpha) K_{S}\left(\theta_{2}\right)
\end{aligned}
$$

and the result follows.

