MATH 556 - PRACTICE EXAM QUESTIONS

1. The joint pdf for continuous random variables X, Y with ranges $\mathbb{X} \equiv \mathbb{Y} \equiv \mathbb{R}^+$ is given by

$$f_{X,Y}(x,y) = c_1 \exp\left\{-\frac{1}{2}(x+y)\right\}$$
 $x,y > 0$

and zero otherwise, for some normalizing constant c_1 .

Consider continuous random variable U defined by

$$U = \frac{1}{2} \left(X - Y \right).$$

Find the pdf of U, f_U .

2. In biology, a (2-D) confocal microscopy image of a cell nucleus is well represented by an ellipse with parameters a > b. Within the cell nucleus are found localized protein bodies (called PMLs), and a key biological question relates to the spatial distribution of the PMLs in the nucleus.

Suppose that the (x, y) coordinates of a PML body in the image of a nucleus (suitably rotated and standardized for magnitude) are continuous random variables X and Y with joint pdf

$$f_{X,Y}(x,y) = c_2$$
 $\frac{x^2}{a^2} + \frac{y^2}{b^2} < 1$

and zero otherwise for some normalizing constant c_2 (that is, the pdf is constant on interior of the ellipse, and zero otherwise).

- (a) Find the marginal pdfs for *X* and *Y* implied by this joint model.
- (b) Show that the covariance between X and Y is zero, and hence that the two variables are uncorrelated.
- (c) Are *X* and *Y* independent? Justify your answer.

3. (a) Compute, from first principles, the correlation

$$Corr_{f_{X|Y}}[X,Y]$$

when

$$X \sim Normal(0,1)$$

and $Y = X^2$.

Are *X* and *Y* independent? Justify your answer.

Hint: If $Y = X^2$, the rules of expectation dictate that for a general function h

$$E_{f_{X,Y}}\left[h\left(X,Y\right)\right] \equiv E_{f_{X}}\left[h\left(X,X^{2}\right)\right]$$

(b) Suppose that X_1 and X_2 are independent standard normal random variables. Define random variables Y_1 and Y_2 by the multivariate linear transformation

$$Y = AX + b$$

where $X = (X_1, X_2)^T$ and $Y = (Y_1, Y_2)^T$ are the column vector random variables, A is the 2×2 matrix

$$A = \left[\begin{array}{cc} 1 & -1 \\ 0 & 2 \end{array} \right]$$

and $b = (1, 2)^T$ is a constant column vector.

- (i) The marginal distribution of Y_1 .
- (ii) The covariance and correlation between Y_1 and Y_2 .

4. (a) Suppose that X_1 and X_2 are independent and identically distributed continuous random variables with cumulative distribution function

$$F_X(x) = \frac{x}{1+x} \qquad x > 0$$

with $F_X(x) = 0$ for $x \leq 0$.

Find $P[X_1X_2 < 1]$.

(b) Suppose that Z_1 and Z_2 are independent Normal(0,1) random variables. Let

$$Y_1 = \frac{Z_1}{\sqrt{Z_1^2 + Z_2^2}}$$
 $Y_2 = \sqrt{Z_1^2 + Z_2^2}.$

Find the marginal probability density function of Y_1 .

Are Y_1 and Y_2 independent? Justify your answer.

5. (a) Suppose X_1, \ldots, X_n, \ldots are a sequence of random variables with cumulative distribution functions defined by

$$F_{X_n}(x) = \left(\frac{1}{1 + e^{-x}}\right)^n \qquad x \in \mathbb{R}.$$

Find the limiting distributions as $n \longrightarrow \infty$ (if they exist) of the random variables

- (i) X_n ,
- (ii) $U_n = X_n \log n$.

Using the result in (ii), find an approximation to the probability

$$P[X_n > k]$$

for large n.

(b) In a dice rolling game, a fair die (with all six scores having equal probability) is rolled repeatedly and independently under identical conditions. On each roll, the player wins six points if the score is a 6, loses one point if the score is either 2,3,4 or 5, and loses two points if the score is 1

Let T_n denote the points total obtained after n rolls of the die. The player begins the game with a points total equal to zero, that is $T_0 = 0$.

- (i) Find the expectation and variance of the points total after 100 rolls of the die.
- (ii) Find an approximation to the distribution of the points total after n rolls, for large n.
- (iii) Describe the behaviour of the sample average points total, $M_n = T_n/n$, as $n \longrightarrow \infty$.
- 6. (a) (i) Suppose that random variable X has a Poisson distribution with parameter λ . Show that standardized random variable,

$$Z_{\lambda} = \frac{X - \lambda}{\sqrt{\lambda}} \xrightarrow{d} Z \sim N(0, 1)$$

as $\lambda \to \infty$

(ii) Suppose that $X_1,...X_n \sim Poisson(\lambda_X)$ and $Y_1,...Y_n \sim Poisson(\lambda_Y)$, with all variables mutually independent. Find μ such that the random variable M defined by

$$M = \overline{X} + \overline{Y}$$

satisfies

$$M \xrightarrow{p} \mu$$

where

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \qquad \overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

are the sample mean random variables for the two samples respectively.

(b) Suppose that $X_1, ..., X_n \sim Exponential(\lambda)$. The cdf of the random variable $T_n = \max\{X_1, ..., X_n\}$ is given by

$$F_{T_n}(t) = \{F_X(t)\}^n$$
.

where F_X is the cdf of $X_1, ..., X_n$.

- (i) Find $F_{T_n}(t)$ explicitly.
- (ii) Discuss the form of the limiting distribution of T_n as $n \longrightarrow \infty$.
- (iii) Find the form of the limiting distribution of random variable U_n , defined by

$$U_n = \lambda T_n - \log n$$

as $n \longrightarrow \infty$.