MATH 556 - PRACTICE EXAM QUESTIONS

1. Due to the symmetry of form, this joint pdf factorizes simply as

$$
f_{X, Y}(x, y)=\left\{\sqrt{c_{1}} \exp \left\{-\frac{x}{2}\right\}\right\}\left\{\sqrt{c_{1}} \exp \left\{-\frac{y}{2}\right\}\right\}=f_{X}(x) f_{Y}(y) \quad x, y>0
$$

and hence the variables are independent. Now

$$
\int_{0}^{\infty} \exp \left\{-\frac{x}{2}\right\} d x=2
$$

so therefore $\sqrt{c_{1}}=\frac{1}{2}$, and hence $c_{1}=\frac{1}{4}$.
Now random variable U, defined by

$$
U=\frac{1}{2}(X-Y) .
$$

has range $\mathbb{U} \equiv R$ (X and Y are positive but unbounded random variables. Hence, for $u \in \mathbb{R}$, the cdf of U, F_{U}, is given by

$$
F_{U}(u)=P[U \leq u]=P\left[\frac{1}{2}(X-Y) \leq u\right]=\iint_{A_{u}} f_{X, Y}(x, y) d x d y
$$

where $A_{u} \equiv\left\{(x, y) \in \mathbb{R}^{+} \times \mathbb{R}^{+}:(x-y) / 2 \leq u\right\}$. The boundary of the region A_{u} is determined by the three lines

$$
x=0, y=0 \text { and } y=x-2 u
$$

This region is shaded in black in the figures below in the two cases $u<0$ and $u \geq 0$ respectively; in these pictures the shaded region extends over all x and y above and to the left of the line $y=x-2 u$.

Integrating first $d x$ for a fixed y, we see that the integral is always $x=0$ to $x=y+2 u$, irrespective of whether $u<0$ or $u \geq 0$. However, the lower limit of the outer $d y$ integral is $y=-2 u$ if $u<0$, and is zero if $u \geq 0$. Combining these together we have the lower limit of

$$
l(u)=\max \{0,-2 u\}
$$

and hence

$$
\begin{aligned}
F_{U}(u) & =\int_{l(u)}^{\infty}\left\{\int_{0}^{y+2 u} \frac{1}{4} \exp \left\{-\frac{1}{2}(x+y)\right\} d x\right\} d y \\
& =\int_{l(u)}^{\infty} \frac{1}{2} \exp \left\{-\frac{y}{2}\right\}\left\{\int_{0}^{y+2 u} \frac{1}{2} \exp \left\{-\frac{x}{2}\right\} d x\right\} d y \\
& =\int_{l(u)}^{\infty} \frac{1}{2} \exp \left\{-\frac{y}{2}\right\}\left[-\exp \left\{-\frac{x}{2}\right\}\right]_{0}^{y+2 u} d y \\
& =\int_{l(u)}^{\infty} \frac{1}{2} \exp \left\{-\frac{y}{2}\right\}\left(1-\exp \left\{-\frac{(y+2 u)}{2}\right\}\right) d y \\
& =\int_{l(u)}^{\infty} \frac{1}{2} \exp \left\{-\frac{y}{2}\right\} d y-\int_{l(u)}^{\infty} \frac{1}{2} \exp \left\{-\frac{2(y+u)}{2}\right\} d y \\
& =\exp \left\{-\frac{l(u)}{2}\right\}-\frac{1}{2} \exp \{-u\} \int_{l(u)}^{\infty} \exp \{-y\} d y \\
& =\exp \left\{-\frac{l(u)}{2}\right\}-\frac{1}{2} \exp \{-(u+l(u))\}
\end{aligned}
$$

If $u<0, l(u)=-2 u$, and hence

$$
F_{U}(u)=e^{u}-\frac{1}{2} e^{u}=\frac{1}{2} e^{u}
$$

and if $u \geq 0, l(u)=0$, and hence

$$
F_{U}(u)=1-\frac{1}{2} e^{-u}
$$

Thus

$$
f_{U}(u)=\left\{\begin{array}{ll}
\frac{1}{2} e^{u} & u<0 \\
\frac{1}{2} e^{-u} & u \geq 0
\end{array}=\frac{1}{2} \exp \{-|u|\} \quad u \in \mathbb{R}\right.
$$

2. Joint pdf is constant on the ellipse \mathcal{E}, thus the normalizing constant is the reciprocal of the area of the ellipse, that is $1 /(\pi a b)$. The range of the random variables can be re-written

$$
\mathbb{X}^{(2)} \equiv\left\{(x, y):-a<x<a,-b\left(1-x^{2} / a^{2}\right)^{1 / 2}<y<b\left(1-x^{2} / a^{2}\right)^{1 / 2}\right\}
$$

and hence, by double integration,

$$
\begin{aligned}
\iint_{\mathcal{E}} f_{X, Y}(x, y) d x d y & =\int_{-a}^{a}\left\{\int_{-b\left(1-x^{2} / a^{2}\right)^{1 / 2}}^{b\left(1-x^{2} / a^{2}\right)^{1 / 2}} c_{2} d y\right\} d x \\
& =\int_{-a}^{a} 2 c_{2} b\left(1-x^{2} / a^{2}\right)^{1 / 2} d x \\
& =a b c_{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \cos ^{2} t d t \quad(\text { setting } x=a \sin t) \\
& =a b c_{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(\cos 2 t+1) d t \\
& =a b c_{2}\left[\frac{1}{2} \sin 2 t+t\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}=\pi a b c_{2}
\end{aligned}
$$

and hence $c_{2}=1 /(\pi a b)$.
(a) For the marginal pdf of X, f_{X}, for fixed x,

$$
f_{X}(x)=\int_{-b\left(1-x^{2} / a^{2}\right)^{1 / 2}}^{b\left(1-x^{2} / a^{2}\right)^{1 / 2}} \frac{1}{\pi a b} d y=\frac{2}{\pi a}\left(1-x^{2} / a^{2}\right)^{1 / 2} \quad-a<x<a
$$

(b) By symmetry of form, we must have for the marginal for Y

$$
f_{Y}(y)=\frac{2}{\pi b}\left(1-y^{2} / b^{2}\right)^{1 / 2} \quad-b<y<b
$$

and because the two functions

$$
\left(1-x^{2} / a^{2}\right)^{1 / 2} \quad\left(1-y^{2} / b^{2}\right)^{1 / 2}
$$

are symmetric about zero, we must have that

$$
E_{f_{X}}[X]=E_{f_{Y}}[Y]=0 .
$$

Finally for the covariance, we have that

$$
\begin{aligned}
\operatorname{Cov}_{f_{X, Y}}[X, Y] & =E_{f_{X, Y}}[X Y]-E_{f_{X}}[X] E_{f_{Y}}[Y]=E_{f_{X, Y}}[X Y] \\
& =\int_{-a}^{a}\left\{\int_{-b\left(1-x^{2} / a^{2}\right)^{1 / 2}}^{b\left(1-x^{2} / a^{2}\right)^{1 / 2}} x y f_{X, Y}(x, y) d y\right\} d x \\
& =\int_{-a}^{a}\left\{\int_{-b\left(1-x^{2} / a^{2}\right)^{1 / 2}}^{b\left(1-x^{2} / a^{2}\right)^{1 / 2}} y d y\right\} \frac{x}{\pi a b} d x \\
& =\int_{-a}^{a}\left[\frac{y^{2}}{2}\right]_{-b\left(1-x^{2} / a^{2}\right)^{1 / 2}}^{b\left(1-x^{2} / a^{2}\right)^{1 / 2}} \frac{x}{\pi a b} d x \\
& =0
\end{aligned}
$$

Hence X and Y are uncorrelated.
(c) X and Y not independent as there exists at least one pair $(x, y) \in \mathbb{R}^{2}$ such that

$$
f_{X, Y}(x, y) \neq f_{X}(x) f_{Y}(y)
$$

(for example, any point within the rectangle $(-a, a) \times(-b, b)$ that is outside the ellipse has joint probability density zero, but $f_{X}(x)>0$ and $\left.f_{Y}(y)>0\right)$.
3. (a) Need expectations, variances and covariance. We have for X

$$
E_{f_{X}}[X]=0 \quad E_{f_{X}}\left[X^{2}\right]=1 \quad \operatorname{Var}_{f_{X}}[X]=1
$$

and for Y

$$
E_{f_{Y}}[Y]=E_{f_{X}}\left[X^{2}\right]=1 \quad E_{f_{Y}}\left[Y^{2}\right]=E_{f_{X}}\left[X^{4}\right]=3 \quad \operatorname{Var}_{f_{Y}}[Y]=2
$$

and for the covariance

$$
E_{f_{X, Y}}[X Y]=E_{f_{X}}\left[X^{3}\right]=0 \therefore \operatorname{Cov}_{f_{X, Y}}[X, Y]=0-0 \times 1=0
$$

and hence the correlation is also zero.
X and Y are not independent (merely uncorrelated); we have the joint distribution non-zero only on the line $y=x^{2}$, whereas f_{X} and f_{Y} are positive on the whole of $\mathbb{R} \times \mathbb{R}^{+}$.
(b) (i) By elementary properties of independent standard normal random variables (using mgfs for example)

$$
X_{1}-X_{2} \sim \operatorname{Normal}(0,2)
$$

and thus

$$
Y_{1}=X_{1}-X_{2}+1 \sim \operatorname{Normal}(1,2)
$$

(ii) By properties of the multivariate normal distribution, using multivariate transformation results

$$
Y \sim N(b, \Sigma)
$$

where

$$
\Sigma=A A^{T}=\left[\begin{array}{rr}
1 & -1 \\
0 & 2
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{rr}
2 & -2 \\
-2 & 4
\end{array}\right]
$$

and hence the covariance is

$$
\Sigma_{12}=-2
$$

and the correlation is

$$
\frac{\Sigma_{12}}{\sqrt{\Sigma_{11} \times \Sigma_{22}}}=\frac{-2}{\sqrt{2 \times 4}}=-\frac{1}{\sqrt{2}}
$$

4. (a) Note first that

$$
f_{X}(x)=\frac{1}{(1+x)^{2}} \quad x>0
$$

and zero otherwise. Then

$$
\begin{aligned}
P\left[X_{1} X_{2}<1\right] & =\int_{0}^{\infty} \int_{0}^{1 / x_{1}} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2} d x_{1} \\
& =\int_{0}^{\infty} \int_{0}^{1 / x_{1}} \frac{1}{\left(1+x_{1}\right)^{2}} \frac{1}{\left(1+x_{2}\right)^{2}} d x_{2} d x_{1}=\int_{0}^{\infty}\left[\frac{x_{2}}{1+x_{2}}\right]_{0}^{1 / x_{1}} \frac{1}{\left(1+x_{1}\right)^{2}} d x_{1} \\
& =\int_{0}^{\infty} \frac{1 / x_{1}}{1+1 / x_{1}} \frac{1}{\left(1+x_{1}\right)^{2}} d x_{1}=\int_{0}^{\infty} \frac{x_{1}}{\left(1+x_{1}\right)^{3}} d x_{1} \\
& =\left[-\frac{1}{2} \frac{x_{1}}{\left(1+x_{1}\right)^{2}}\right]_{0}^{\infty}+\int_{0}^{\infty} \frac{1}{2} \frac{1}{\left(1+x_{1}\right)^{2}} d x_{1}=0+\frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

(b) Using the multivariate transformation theorem
(a) We have that $\mathbb{Y}^{(2)} \equiv \mathbb{R} \times \mathbb{R}^{+}$, and

$$
g_{1}\left(t_{1}, t_{2}\right)=\frac{t_{1}}{\sqrt{t_{1}^{2}+t_{2}^{2}}} \quad g_{2}\left(t_{1}, t_{2}\right)=\sqrt{t_{1}^{2}+t_{2}^{2}}
$$

(b) Inverse transformations:

$$
\left.\begin{array}{l}
Y_{1}=\frac{Z_{1}}{\sqrt{Z_{1}^{2}+Z_{2}^{2}}} \\
Y_{2}=\sqrt{Z_{1}^{2}+Z_{2}^{2}}
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{l}
Z_{1}=Y_{1} Y_{2} \\
Z_{2}=\sqrt{1-Y_{1}^{2}} Y_{2}
\end{array}\right.
$$

and thus

$$
g_{1}^{-1}\left(t_{1}, t_{2}\right)=t_{1} t_{2} \quad g_{2}^{-1}\left(t_{1}, t_{2}\right)=\sqrt{1-t_{1}^{2}} t_{2}
$$

(c) Range: we have that $-1<Y_{1}<1$ and $Y_{2}>0$, so $\mathbb{Y}^{(2)}=(-1,1) \times \mathbb{R}^{+}$
(d) The Jacobian for points $\left(y_{1}, y_{2}\right) \in \mathbb{Y}^{(2)}$ is

$$
D_{y_{1}, y_{2}}=\left[\begin{array}{cc}
\frac{\partial z_{1}}{\partial y_{1}} & \frac{\partial z_{1}}{\partial y_{2}} \\
\frac{\partial z_{2}}{\partial y_{1}} & \frac{\partial z_{2}}{\partial y_{2}}
\end{array}\right]=\left[\begin{array}{cc}
y_{2} & y_{1} \\
\frac{-y_{1} y_{2}}{\sqrt{1-y_{1}^{2}}} & \sqrt{1-y_{1}^{2}}
\end{array}\right] \Rightarrow\left|J\left(y_{1}, y_{2}\right)\right|=\frac{y_{2}}{\sqrt{1-y_{1}^{2}}}
$$

(e) For the joint pdf we have for $\left(y_{1}, y_{2}\right) \in \mathbb{Y}^{(2)}$, by independence of Z_{1} and Z_{2}

$$
\begin{aligned}
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) & =f_{Z_{1}, Z_{2}}\left(y_{1} y_{2}, \sqrt{1-y_{1}^{2}} y_{2}\right) \times \frac{y_{2}}{\sqrt{1-y_{1}^{2}}} \\
& =\frac{1}{\pi} \frac{y_{2} \exp \left\{-y_{2}^{2} / 2\right\}}{\sqrt{1-y_{1}^{2}}}
\end{aligned}
$$

and zero otherwise, where, by inspection,

$$
f_{Y_{1}}\left(y_{1}\right)=\frac{1}{\pi \sqrt{1-y_{1}^{2}}} \quad-1<y_{1}<1 \quad f_{Y_{2}}\left(y_{2}\right)=y_{2} \exp \left\{-y_{2}^{2} / 2\right\} \quad y_{2}>0
$$

Note that Y_{1} and Y_{2} are independent, as their joint pdf factorizes into the respective marginal pdfs at all points of \mathbb{R}^{2}.
5. (a) (i) As $n \rightarrow \infty$, for $x \in \mathbb{R}$

$$
\left(\frac{1}{1+e^{-x}}\right)<1 \quad \therefore \quad F_{X_{n}}(x) \rightarrow 0
$$

and so the limiting function is not a cdf, and no limiting distribution exists.
(ii) If $U_{n}=X_{n}-\log n$. Then $\mathbb{U} \equiv(-\infty, \infty)$ and the $c d f$ of U_{n} is

$$
F_{U_{n}}(u)=P\left[U_{n} \leq u\right]=P\left[X_{n}-\log n \leq u\right]=P\left[X_{n} \leq u+\log n\right]=F_{X_{n}}(u+\log n)
$$

and so

$$
F_{Y_{n}}(y)=\left(\frac{1}{1+e^{-u-\log n}}\right)^{n}=\left(\frac{1}{1+e^{-u} / n}\right)^{n}=\left(1-\frac{e^{-u}}{n+e^{-u}}\right)^{n}
$$

Thus as $n \rightarrow \infty$, for all u

$$
F_{U_{n}}(u) \rightarrow \exp \left\{-e^{-u}\right\} \quad \therefore \quad F_{U_{n}}(u) \rightarrow F_{U}(u)=\exp \left\{-e^{-u}\right\}
$$

and the limiting distribution of U_{n} does exist, and is continuous on \mathbb{R}.
Thus, for large n,
$P\left[X_{n}>k\right]=P\left[U_{n}>k+\log n\right]=1-F_{U_{n}}(k+\log n) \approx 1-F_{U}(k+\log n)=1-\exp \left\{-e^{-k-\log n}\right\}$
(b) Let X_{i} denote the score on roll i. Then

$$
E_{f_{X_{i}}}\left[X_{i}\right]=\frac{-2+(4 \times-1)+6}{6}=0 \quad \operatorname{Var}_{f_{X_{i}}}\left[X_{i}\right]=E_{f_{X_{i}}}\left[X_{i}^{2}\right]=\frac{4+(4 \times 1)+36}{6}=\frac{22}{3}
$$

and denote these quantities μ and σ^{2} respectively.
(i) The expectation and variance of T_{100} are $100 \mu=0$ and $100 \sigma^{2}=2200 / 3$.
(ii) The Central Limit Theorem gives that for the iid $\left\{X_{i}\right\}$ collection

$$
\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sqrt{n \sigma^{2}}} \sim A N(0,1)
$$

where $A N$ denotes Asymptotically Normal (as $n \rightarrow \infty$). Thus

$$
T_{n}=\sum_{i=1}^{n} X_{i} \sim A N\left(0, \frac{22 n}{3}\right)
$$

and
(iii) Using the Weak Law of Large numbers, we can deduce that

$$
M_{n} \xrightarrow{p} \mu=0
$$

as $n \longrightarrow \infty$, that is, the sample mean random quantity converges in probability to zero, that is, the probability distribution of M_{n} becomes degenerate at zero.
6. (a) (i) The Poisson distribution mgf is

$$
M_{X}(t)=\exp \left\{\lambda\left(e^{t}-1\right)\right\} .
$$

Now, if $Z_{\lambda}=(X-\lambda) / \sqrt{\lambda}$, we use the mgf result for linear functions, that is if

$$
Y=a X+b \Longrightarrow M_{Y}(t)=e^{b t} M_{X}(a t) .
$$

Here, $a=1 / \sqrt{\lambda}$ and $b=-\sqrt{\lambda}$, so

$$
\begin{aligned}
M_{Z_{\lambda}}(t) & =e^{-\sqrt{\lambda} t} \exp \left\{\lambda\left(e^{t / \sqrt{\lambda}}-1\right)\right\}=\exp \left\{-\lambda^{1 / 2} t+\lambda\left[\frac{t}{\lambda^{1 / 2}}+\frac{t^{2}}{2 \lambda}+\frac{t^{3}}{6 \lambda^{3 / 2}}+\ldots\right]\right\} \\
& =\exp \left\{\frac{t^{2}}{2}+\frac{t^{3}}{6 \sqrt{\lambda}}+\ldots\right\} \rightarrow \exp \left\{\frac{t^{2}}{2}\right\} \quad \text { as } \lambda \rightarrow \infty
\end{aligned}
$$

so therefore

$$
Z_{\lambda} \xrightarrow{d} Z \sim \operatorname{Normal}(0,1)
$$

as $\lambda \rightarrow \infty$.
(ii) Let $T_{i}=X_{i}+Y_{i}$. Then, by properties of Poisson random variables, we have that $T_{i} \sim \operatorname{Poisson}\left(\lambda_{X}+\lambda_{Y}\right)$. Hence

$$
T=\sum_{i=1}^{n}\left(X_{i}+Y_{i}\right) \sim \text { Poisson }\left(n\left(\lambda_{X}+\lambda_{Y}\right)\right) .
$$

so that

$$
E_{f_{T}}[T]=n\left(\lambda_{X}+\lambda_{Y}\right) \quad \operatorname{Var}_{f_{T}}[T]=n\left(\lambda_{X}+\lambda_{Y}\right)
$$

But $M=\frac{T}{n}$, so

$$
E_{f_{M}}[M]=\frac{n\left(\lambda_{X}+\lambda_{Y}\right)}{n}=\lambda_{X}+\lambda_{Y} \quad \operatorname{Var}_{f_{M}}[M]=\frac{n\left(\lambda_{X}+\lambda_{Y}\right)}{n^{2}}
$$

which are both finite. Hence, by the Weak Law of Large Numbers

$$
M \xrightarrow{p} E_{f_{M}}[M]=\lambda_{X}+\lambda_{Y}=\mu
$$

(b) (i) $T_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ so

$$
F_{T_{n}}(t)=\left\{F_{X}(t)\right\}^{n}=\left(1-e^{-\lambda t}\right)^{n} \quad t \in \mathbb{R}^{+}
$$

(ii) In the limit as $n \rightarrow \infty$ we have the limit for fixed t as

$$
F_{T_{n}}(t) \rightarrow 0 \quad \text { for all } t
$$

Hence there is no limiting distribution.
(iii) If $U_{n}=\lambda T_{n}-\log n$, we have from first principles that for $u>-\log n$

$$
\begin{aligned}
F_{U_{n}}(u) & =P\left[U_{n} \leq u\right]=P\left[\lambda T_{n}-\log n \leq u\right] \\
& =P\left[T_{n} \leq \frac{1}{\lambda}(u+\log n)\right] \\
& =F_{T_{n}}\left(\frac{1}{\lambda}(u+\log n)\right) \\
& =\left(1-e^{-(u+\log n)}\right)^{n} \\
& =\left(1-\frac{e^{-u}}{n}\right)^{n}
\end{aligned}
$$

so that

$$
F_{U_{n}}(u) \rightarrow \exp \left\{-e^{-u}\right\} \quad \text { as } n \rightarrow \infty
$$

which is a valid cdf. Hence the limiting distribution is

$$
F_{U}(u)=\exp \left\{-e^{-u}\right\} \quad u \in \mathbb{R}
$$

