MATH 556 - EXERCISES 4

These exercises are not for assessment

- 1. Using the Central Limit Theorem, construct Normal approximations to probability distribution of a random variable *X* having
 - (i) a Binomial distribution, $X \sim Binomial(n, \theta)$
 - (ii) a Poisson distribution, $X \sim Poisson(\lambda)$
 - (iii) a Negative Binomial distribution, $X \sim NegBinomial(n, \theta)$
 - (iv) a Gamma distribution, $X \sim Gamma(\alpha, \beta)$

In the following questions, use the following results concerning extreme *order statistics*; let Y_n and Z_n correspond to the *maximum* and *minimum* order statistics derived from random sample $X_1, ..., X_n$ from population with cdf F_X , that is

$$Y_n = \max \{X_1, ..., X_n\}$$
 $Z_n = \min \{X_1, ..., X_n\}.$

Then the cdfs of Y_n and Z_n are given by

$$F_{Y_n}(y) = \{F_X(y)\}^n$$
 $F_{Z_n}(z) = 1 - \{1 - F_X(z)\}^n$.

2. Suppose $X_1, ..., X_n \sim Uniform(0, 1)$, that is

$$F_X(x) = x \qquad 0 \le x \le 1$$

Find the cdfs of Y_n and Z_n , and the limiting distributions as $n \longrightarrow \infty$.

3. Suppose $X_1, ..., X_n$ have cdf

$$F_X(x) = 1 - x^{-1}$$
 $x \ge 1$

Find the cdfs of Z_n and $U_n = Z_n^n$, and the limiting distributions of Z_n and U_n as $n \longrightarrow \infty$.

4. Suppose $X_1, ..., X_n$ have cdf

$$F_X(x) = \frac{1}{1 + e^{-x}} \qquad x \in \mathbb{R}$$

Find the cdfs of Y_n and $U_n = Y_n - \log n$ and the limiting distributions of Y_n and U_n as $n \longrightarrow \infty$.

5. Suppose $X_1, ..., X_n$ have cdf

$$F_X(x) = 1 - \frac{1}{1 + \lambda x} \qquad x > 0$$

Find the cdfs of Y_n and Z_n , and the limiting distributions as $n \longrightarrow \infty$. Find also the cdfs of $U_n = Y_n/n$ and $V_n = nZ_n$, and the limiting distributions of U_n and V_n as $n \longrightarrow \infty$.

6. Suppose $X_1, ..., X_n \sim Poisson(\lambda)$ are independent random variables. Let

$$M_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Show that $M_n \xrightarrow{p} \lambda$ as $n \longrightarrow \infty$. If random variable T_n is defined by $T_n = e^{-M_n}$, show that $T_n \xrightarrow{p} e^{-\lambda}$, and find an approximation to the probability distribution of T_n as $n \longrightarrow \infty$.

7. For the following sequences of random variables, $\{X_n\}$, decide whether the sequence converges in *mean-square* (*r*th mean for r = 2) or *in probability* as $n \to \infty$.

(a)
$$X_n = \begin{cases} 1 & \text{with prob. } 1/n \\ 2 & \text{with prob. } 1-1/n \end{cases}$$

(b)
$$X_n = \begin{cases} n^2 & \text{with prob. } 1/n \\ 1 & \text{with prob. } 1-1/n \\ 1 & \text{with prob. } 1-1/n \\ 0 & \text{with prob. } 1-1/\log n \end{cases}$$

Almost sure convergence and the Borel-Cantelli Lemma.

8. Consider the sequence of random variables defined for n = 1, 2, 3, ... by

$$X_n = I_{[0,n^{-1})}(U_n)$$

where $U_1, U_2, ...$ are a sequence of independent Uniform(0, 1) random variables, and I_A is the indicator function for set A

$$I_A(\omega) = \begin{cases} 1 & \omega \in A \\ 0 & \omega \notin A \end{cases}$$

Does the sequence $\{X_n\}$ converge

- (a) almost surely ?
- (b) in r^{th} mean for r = 1?

[*Hint*: Consider the events $A_n \equiv (X_n \neq 0)$ for n = 1, 2, ...]

9. Let $Z \sim Uniform(0, 1)$, and define a sequence of random variables $\{X_n\}$ by

$$X_n = nI_{[1-n^{-1},1)}(Z)$$
 $n = 1, 2, ...$

where, for set A

$$I_A(Z) = \begin{cases} 1 & Z \in A \\ 0 & Z \notin A \end{cases}$$

that is, I_A is the indicator random variable associated with the set A.

Does the sequence $\{X_n\}$ converge in any mode to any limit random variable ? Justify your answer.

10. Suppose, for $n = 1, 2, ..., X_n \sim Bernoulli(p_n)$ are a sequence of independent random variables where

$$P[X_n = 1] = p_n = \frac{1}{\sqrt{n}}$$

Does $P[X_n = 1 \text{ infinitely often }] = 1$? Justify your answer.