MATH 556 - EXERCISES 4

These exercises are not for assessment

1. Using the Central Limit Theorem, construct Normal approximations to probability distribution of a random variable X having
(i) a Binomial distribution, $X \sim \operatorname{Binomial}(n, \theta)$
(ii) a Poisson distribution, $X \sim \operatorname{Poisson}(\lambda)$
(iii) a Negative Binomial distribution, $X \sim \operatorname{Neg} \operatorname{Binomial}(n, \theta)$
(iv) a Gamma distribution, $X \sim \operatorname{Gamma}(\alpha, \beta)$

In the following questions, use the following results concerning extreme order statistics; let Y_{n} and Z_{n} correspond to the maximum and minimum order statistics derived from random sample $X_{1}, \ldots X_{n}$ from population with cdf F_{X}, that is

$$
Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\} \quad Z_{n}=\min \left\{X_{1}, \ldots, X_{n}\right\}
$$

Then the cdfs of Y_{n} and Z_{n} are given by

$$
F_{Y_{n}}(y)=\left\{F_{X}(y)\right\}^{n} \quad F_{Z_{n}}(z)=1-\left\{1-F_{X}(z)\right\}^{n}
$$

2. Suppose $X_{1}, \ldots, X_{n} \sim \operatorname{Uniform}(0,1)$, that is

$$
F_{X}(x)=x \quad 0 \leq x \leq 1
$$

Find the cdfs of Y_{n} and Z_{n}, and the limiting distributions as $n \longrightarrow \infty$.
3. Suppose X_{1}, \ldots, X_{n} have cdf

$$
F_{X}(x)=1-x^{-1} \quad x \geq 1
$$

Find the cdfs of Z_{n} and $U_{n}=Z_{n}^{n}$, and the limiting distributions of Z_{n} and U_{n} as $n \longrightarrow \infty$.
4. Suppose X_{1}, \ldots, X_{n} have cdf

$$
F_{X}(x)=\frac{1}{1+e^{-x}} \quad x \in \mathbb{R}
$$

Find the cdfs of Y_{n} and $U_{n}=Y_{n}-\log n$ and the limiting distributions of Y_{n} and U_{n} as $n \longrightarrow \infty$.
5. Suppose X_{1}, \ldots, X_{n} have cdf

$$
F_{X}(x)=1-\frac{1}{1+\lambda x} \quad x>0
$$

Find the cdfs of Y_{n} and Z_{n}, and the limiting distributions as $n \longrightarrow \infty$. Find also the cdfs of $U_{n}=Y_{n} / n$ and $V_{n}=n Z_{n}$, and the limiting distributions of U_{n} and V_{n} as $n \longrightarrow \infty$.
6. Suppose $X_{1}, \ldots, X_{n} \sim \operatorname{Poisson}(\lambda)$ are independent random variables. Let

$$
M_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

Show that $M_{n} \xrightarrow{p} \lambda$ as $n \longrightarrow \infty$. If random variable T_{n} is defined by $T_{n}=e^{-M_{n}}$, show that $T_{n} \xrightarrow{p} e^{-\lambda}$, and find an approximation to the probability distribution of T_{n} as $n \longrightarrow \infty$.
7. For the following sequences of random variables, $\left\{X_{n}\right\}$, decide whether the the sequence converges in mean-square (r th mean for $r=2$) or in probability as $n \longrightarrow \infty$.
(a) $\quad X_{n}= \begin{cases}1 & \text { with prob. } 1 / n \\ 2 & \text { with prob. } 1-1 / n\end{cases}$
(b) $\quad X_{n}= \begin{cases}n^{2} & \text { with prob. } 1 / n \\ 1 & \text { with prob. } 1-1 / n\end{cases}$
(c) $\quad X_{n}= \begin{cases}n & \text { with prob. } 1 / \log n \\ 0 & \text { with prob. } 1-1 / \log n\end{cases}$

Almost sure convergence and the Borel-Cantelli Lemma.

8. Consider the sequence of random variables defined for $n=1,2,3, \ldots$ by

$$
X_{n}=I_{\left[0, n^{-1}\right)}\left(U_{n}\right)
$$

where U_{1}, U_{2}, \ldots are a sequence of independent $\operatorname{Uniform}(0,1)$ random variables, and I_{A} is the indicator function for set A

$$
I_{A}(\omega)= \begin{cases}1 & \omega \in A \\ 0 & \omega \notin A\end{cases}
$$

Does the sequence $\left\{X_{n}\right\}$ converge
(a) almost surely?
(b) in $r^{t h}$ mean for $r=1$?
[Hint: Consider the events $A_{n} \equiv\left(X_{n} \neq 0\right)$ for $\left.n=1,2, \ldots\right]$
9. Let $Z \sim \operatorname{Uniform}(0,1)$, and define a sequence of random variables $\left\{X_{n}\right\}$ by

$$
X_{n}=n I_{\left[1-n^{-1}, 1\right)}(Z) \quad n=1,2, \ldots
$$

where, for set A

$$
I_{A}(Z)= \begin{cases}1 & Z \in A \\ 0 & Z \notin A\end{cases}
$$

that is, I_{A} is the indicator random variable associated with the set A.
Does the sequence $\left\{X_{n}\right\}$ converge in any mode to any limit random variable? Justify your answer.
10. Suppose, for $n=1,2, \ldots, X_{n} \sim \operatorname{Bernoulli}\left(p_{n}\right)$ are a sequence of independent random variables where

$$
P\left[X_{n}=1\right]=p_{n}=\frac{1}{\sqrt{n}} .
$$

Does $P\left[X_{n}=1\right.$ infinitely often $]=1$? Justify your answer.

