MATH 556 - EXERCISES 3

These exercises are not for assessment

1. The joint pdf $f_{X,Y}$ of positive random variables X and Y is specified as

$$f_{X,Y}(x,y) = f_{Y|X}(y|x)f_X(x)$$

Identify the marginal distribution of Y when

- (i) $Y|X = x \sim Poisson(x)$ and $X \sim Gamma(\alpha, \beta)$.
- (ii) $Y|X = x \sim Exponential(x)$ and $X \sim Gamma(\alpha, \beta)$.
- (iii) $Y|X = x \sim Binomial(n, x)$ and $X \sim Beta(\alpha, \beta)$.
- 2. Suppose that *Y* has a finite mixture distribution where

$$f_Y(y) = \sum_{k=1}^K \pi_k f_k(y|\theta_k)$$

for component pmfs/pdfs f_1, \ldots, f_k and (π_1, \ldots, π_K) satisfy $0 < \pi_k < 1$ and $\sum_{k=1}^K \pi_k = 1$. Let μ_1, \ldots, μ_K be the expected values derived from each of the component pmfs/pdfs, and let M_1, \ldots, M_K be the corresponding mgfs. Show that

$$E_{f_Y}[Y] = \sum_{k=1}^K \pi_k \mu_k$$

and find a similar representation for the mgf $M_Y(t)$.

3. A simple and valid finite mixture distribution with K = 2 can be constructed by setting

$$f_1(y) = f_{Y|X}(y|x=1) = I_{\{0\}}(y) \qquad \qquad f_2(y) = f_{Y|X}(y|x=2) \equiv Normal(0,1)$$

where $I_A(x)$ is the indicator function for set A. Suppose that

$$f_X(1) = P[X = 1] = \pi$$
 $f_X(2) = P[X = 2] = 1 - \pi$

Suppose that it is **known** that y = 0. Using Bayes Theorem, derive the *posterior probability* conditional on y = 0, that is

$$f_{X|Y}(x|0)$$

for x = 1, 2.

4. The *skewness*, ς , and *kurtosis*, κ , of a probability distribution f_X are defined by

$$\varsigma = \frac{E_{f_X}[(X-\mu)^3]}{\sigma^3} \qquad \qquad \kappa = \frac{E_{f_X}[(X-\mu)^4]}{\sigma^4}$$

where μ and σ^2 are the expectation and variance of f_X .

- (i) Compute the skewness and kurtosis for the Normal(0, 1) distribution.
- (ii) *Scale Mixtures:* Suppose that $X|V = v \sim N(0, v)$ and $V \sim f_V$, where V is a positive random variable. Using iterated expectation, give an expression for the form of the (marginal) skewness and kurtosis of X.
- (iii) *Location-Scale Mixtures:* Show that a distribution with skewness not equal to zero can be constructed using a location-scale mixture of a Normal(0, 1) pdf.
- 5. Find the *skewness* of the following standard distributions
 - (i) $Bernoulli(\theta)$
 - (ii) $Poisson(\lambda)$
 - (iii) $Gamma(\alpha, \beta)$

MATH 556 EXERCISES 3