MATH 556 - EXERCISES 3

These exercises are not for assessment

1. The joint pdf $f_{X, Y}$ of positive random variables X and Y is specified as

$$
f_{X, Y}(x, y)=f_{Y \mid X}(y \mid x) f_{X}(x)
$$

Identify the marginal distribution of Y when
(i) $Y \mid X=x \sim \operatorname{Poisson}(x)$ and $X \sim \operatorname{Gamma}(\alpha, \beta)$.
(ii) $Y \mid X=x \sim \operatorname{Exponential}(x)$ and $X \sim \operatorname{Gamma}(\alpha, \beta)$.
(iii) $Y \mid X=x \sim \operatorname{Binomial}(n, x)$ and $X \sim \operatorname{Beta}(\alpha, \beta)$.
2. Suppose that Y has a finite mixture distribution where

$$
f_{Y}(y)=\sum_{k=1}^{K} \pi_{k} f_{k}\left(y \mid \theta_{k}\right)
$$

for component pmfs/pdfs f_{1}, \ldots, f_{k} and $\left(\pi_{1}, \ldots, \pi_{K}\right)$ satisfy $0<\pi_{k}<1$ and $\sum_{k=1}^{K} \pi_{k}=1$. Let μ_{1}, \ldots, μ_{K} be the expected values derived from each of the component pmfs/pdfs, and let M_{1}, \ldots, M_{K} be the corresponding mgfs. Show that

$$
E_{f_{Y}}[Y]=\sum_{k=1}^{K} \pi_{k} \mu_{k}
$$

and find a similar representation for the $\mathrm{mgf} M_{Y}(t)$.
3. A simple and valid finite mixture distribution with $K=2$ can be constructed by setting

$$
f_{1}(y)=f_{Y \mid X}(y \mid x=1)=I_{\{0\}}(y) \quad f_{2}(y)=f_{Y \mid X}(y \mid x=2) \equiv \operatorname{Normal}(0,1)
$$

where $I_{A}(x)$ is the indicator function for set A. Suppose that

$$
f_{X}(1)=P[X=1]=\pi \quad f_{X}(2)=P[X=2]=1-\pi
$$

Suppose that it is known that $y=0$. Using Bayes Theorem, derive the posterior probability conditional on $y=0$, that is

$$
f_{X \mid Y}(x \mid 0)
$$

for $x=1,2$.
4. The skewness, ς, and kurtosis, κ, of a probability distribution f_{X} are defined by

$$
\varsigma=\frac{E_{f_{X}}\left[(X-\mu)^{3}\right]}{\sigma^{3}} \quad \kappa=\frac{E_{f_{X}}\left[(X-\mu)^{4}\right]}{\sigma^{4}}
$$

where μ and σ^{2} are the expectation and variance of f_{X}.
(i) Compute the skewness and kurtosis for the $\operatorname{Normal}(0,1)$ distribution.
(ii) Scale Mixtures: Suppose that $X \mid V=v \sim N(0, v)$ and $V \sim f_{V}$, where V is a positive random variable. Using iterated expectation, give an expression for the form of the (marginal) skewness and kurtosis of X.
(iii) Location-Scale Mixtures: Show that a distribution with skewness not equal to zero can be constructed using a location-scale mixture of a $\operatorname{Normal}(0,1) \mathrm{pdf}$.
5. Find the skewness of the following standard distributions
(i) Bernoulli (θ)
(ii) Poisson (λ)
(iii) $\operatorname{Gamma}(\alpha, \beta)$

