MATH 556 - EXERCISES 2

These exercises are not for assessment

1. The radius of a circle, R, is a continuous random variable with density function given by

$$
f_{R}(r)=6 r(1-r) \quad 0<r<1
$$

and zero otherwise. Find the density functions of the circumference and the area of the circle.
2. Suppose that X and Y are continuous random variables with joint pdf given by

$$
f_{X, Y}(x, y)=c x(1-y) \quad 0<x<1,0<y<1
$$

and zero otherwise for some constant c. Are X and Y independent random variables?
Find the value of c, and, for the set $A \equiv\{(x, y): 0<x<y<1\}$, the probability

$$
P[X<Y]=\iint_{A} f_{X, Y}(x, y) d x d y
$$

3. Suppose that X and Y are continuous random variables with joint pdf given by

$$
f_{X, Y}(x, y)=\frac{1}{2 x^{2} y} \quad 1 \leq x<\infty, 1 / x \leq y \leq x
$$

and zero otherwise. Derive
(i) the marginal pdf of X and Y
(ii) the conditional pdf of X given $Y=y$, and the conditional pdf of Y given $X=x$.
(iii) the expectation of $Y, E_{f_{Y}}[Y]$.
4. Suppose that X and Y have joint pdf that is constant with support $\mathbb{X}^{(2)} \equiv(0,1) \times(0,1)$.
(i) Find the marginal pdf of random variables $U=X / Y$ and $V=-\log (X Y)$, stating clearly the range of the transformed random variable in each case.
(ii) Find the pdf and cdf of $Z=X-Y$.
5. Suppose that X is a random variable with $\mathrm{pmf} / \mathrm{pdf} f_{X}$ and $\mathrm{mgf} M_{X}$. The cumulant generating function of X, K_{X}, is defined by $K_{X}(t)=\log M_{X}(t)$.

Show that

$$
\frac{d}{d t}\left\{K_{X}(t)\right\}_{t=0}=E_{f_{X}}[X] \quad \frac{d^{2}}{d t^{2}}\left\{K_{X}(t)\right\}_{t=0}=\operatorname{Var}_{f_{X}}[X]
$$

6. Suppose that X and Y are independent $\operatorname{Normal}(0,1)$ random variables.
(i) Let random variable U be defined by $U=X / Y$. Find the pdf of U.
(ii) Suppose now that S is a random variable, independent of X and Y, where $S \sim \operatorname{Gamma}(\nu / 2,1 / 2)$ where ν is a positive integer. Find the pdf of random variable T defined by

$$
T=\frac{X}{\sqrt{S / \nu}}
$$

(iii) Suppose now that the joint pdf of random variables X and Y is specified via the conditional density $f_{X \mid Y}$ and the marginal density f_{Y} as
$f_{X \mid Y}(x \mid y)=\sqrt{\frac{y}{2 \pi}} \exp \left\{-\frac{y x^{2}}{2}\right\} \quad x \in \mathbb{R} \quad f_{Y}(y)=\frac{(\nu / 2)^{(\nu / 2)}}{\Gamma(\nu / 2)} y^{\nu / 2-1} e^{-\nu y / 2} \quad y>0$
and zero otherwise, where ν is a positive integer. Find the marginal pdf of X.

