MATH 556 - EXERCISES 1

These exercises are not for assessment

1. For which values of the constant c do the following functions define valid probability mass functions for a discrete random variable X, taking values on range $\mathbb{X}=\{1,2,3, \ldots\}$:
(a) $f_{X}(x)=c / 2^{x}$
(b) $f_{X}(x)=c /\left(x 2^{x}\right)$
(c) $f_{X}(x)=c /\left(x^{2}\right)$
(d) $f_{X}(x)=c 2^{x} / x$!

In each case, calculate (where possible) $\mathrm{P}[X>1]$ and $\mathrm{P}[X$ is even $]$
2. n identical fair coins are tossed. Those that show Heads are tossed again, and the number of Heads obtained on the second set of tosses defines a discrete random variable X. Assuming that all tosses are independent, find the support \mathbb{X} and probability mass function, f_{X} of X. Hint: recall the Binomial distribution.
3. Suppose that F_{X} is a cdf for random variable X. Let r be a positive integer. Decide whether each of the following functions is also a valid cdf:
(a) $F(x)=\left\{F_{X}(x)\right\}^{r}$
(b) $F(x)=1-\left\{1-F_{X}(x)\right\}^{r}$
(c) $F(x)=F_{X}(x)+\left\{1-F_{X}(x)\right\} \log \left\{1-F_{X}(x)\right\}$
(d) $F(x)=\left\{F_{X}(x)-1\right\} e+\exp \left\{1-F_{X}(x)\right\}$
4. A continuous random variable X has pdf given by

$$
f_{X}(x)=c(1-x) x^{2} \quad 0<x<1
$$

and zero otherwise. Find the value of c, the $\operatorname{cdf} F_{X}$, and

$$
\mathrm{P}[X>1 / 2] .
$$

5. A continuous random variable X has pdf given by

$$
f_{X}(x)=\left\{\begin{array}{cc}
x & 0<x<1 \\
2-x & 1 \leq x<2
\end{array}\right.
$$

and zero otherwise. Sketch f_{X}, and find the cdf F_{X}.
6. A continuous random variable X has cdf given by

$$
F_{X}(x)=c\left(\alpha x^{\beta}-\beta x^{\alpha}\right) \quad 0 \leq x \leq 1
$$

for constants $1 \leq \beta<\alpha$, with the usual behaviour for a cdf elsewhere. Find the value of constant c, and evaluate the r th moment of X.
7. A continuous random variable X has cdf given by

$$
F_{X}(x)=\frac{2 \beta x}{\beta^{2}+x^{2}} \quad 0 \leq x \leq \beta
$$

for constant $\beta>0$, with the usual behaviour for a cdf elsewhere. Find the pdf of X, and show that the expectation of X is

$$
\beta(1-\log 2)
$$

