MATH 556-ASSIGNMENT 4 SOLUTIONS

1 For $t>0$, and constant $k>0$

$$
P[X \geq t]=P[X+k \geq t+k] \leq P\left[(X+k)^{2} \geq(t+k)^{2}\right] \leq \frac{E_{f_{X}}\left[(X+k)^{2}\right]}{(t+k)^{2}}
$$

by the Chebychev Lemma. Now if $k=\sigma^{2} / t$, then

$$
\begin{aligned}
P[X \geq t] \leq \frac{E_{f_{X}}\left[\left(X+\sigma^{2} / t\right)^{2}\right]}{\left(t+\sigma^{2} / t\right)^{2}}=\frac{E_{f_{X}}\left[\left(t X+\sigma^{2}\right)^{2}\right]}{\left(t^{2}+\sigma^{2}\right)^{2}} & =\frac{t^{2} E_{f_{X}}\left[X^{2}\right]+2 t E_{f_{X}}[X]+\sigma^{4}}{\left(t^{2}+\sigma^{2}\right)^{2}} \\
& =\frac{t^{2} \sigma^{2}+\sigma^{4}}{\left(t^{2}+\sigma^{2}\right)^{2}}
\end{aligned}
$$

as $E_{f_{X}}[X]=0$ implies $\sigma^{2}=E_{f_{X}}\left[X^{2}\right]$. Thus

$$
P[X \geq t] \leq \frac{\sigma^{2}}{t^{2}+\sigma^{2}}
$$

4 Marks
2 If $Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$, then for $y \in \mathbb{R}$,
(a) For Y_{n}

$$
F_{Y_{n}}(y)=\left\{F_{X}(y)\right\}^{n}=\left(\frac{1}{2}+\frac{1}{\pi} \arctan (x)\right)^{n} .
$$

But clearly, for any $y, F_{Y_{n}}(y) \longrightarrow 0$, so there is no limiting distribution.
(b) If $T_{n}=\pi Y_{n} / n$, then

$$
F_{T_{n}}(y)=\left\{F_{X}(n y / \pi)\right\}^{n}=\left(\frac{1}{2}+\frac{1}{\pi} \arctan (n y / \pi)\right)^{n}
$$

- For $y<0$,

$$
\arctan (n y / \pi)<0 \quad \therefore \quad\left(\frac{1}{2}+\frac{1}{\pi} \arctan (n y / \pi)\right)<1 / 2
$$

and thus for $y<0, F_{T_{n}}(y) \longrightarrow 0$ as $n \longrightarrow \infty$.

- For $y=0, \arctan (0)=0$, so

$$
F_{T_{n}}(0)=\left(\frac{1}{2}\right)^{n} \longrightarrow 0
$$

and so $F_{T_{n}}(y) \longrightarrow 0$ as $n \longrightarrow \infty$.

- For $y>0$,

$$
\frac{1}{2}+\frac{1}{\pi} \arctan (n y / \pi)=1+\frac{1}{\pi} \arctan (-\pi /(n y))=1+\frac{1}{\pi}\left[-\frac{\pi}{n y}+o\left(n^{-1}\right)\right]
$$

using the approximation given. Thus

Hence, for $y>0$, as $n \longrightarrow \infty$,

$$
F_{T_{n}}(y)=\left(1-\frac{1}{\pi}\left[\frac{\pi}{n y}+o\left(n^{-1}\right)\right]\right)^{n}=\left(1-\frac{1}{n y}+o\left(n^{-1}\right)\right)^{n} \longrightarrow \exp \{-1 / y\}
$$

5 Marks
Note that for arbitrary A, B,

$$
\tan (A+B)=\frac{\sin (A+B)}{\cos (A+B)}=\frac{\sin A \cos B+\cos A \sin B}{\cos A \cos B-\sin A \sin B}
$$

so with $A=\pi / 2, \cos A=0, \sin A=1$, so

$$
\tan (\pi / 2+B)=-\frac{\cos B}{\sin B}=-\frac{1}{\tan B} .
$$

Thus, if $\tan B=x$, then

$$
\tan (\pi / 2+\arctan (x))=-\frac{1}{x} \quad \therefore \quad \tan (\pi / 2+\arctan (-1 / x))=x
$$

and thus

$$
\pi / 2+\arctan (-1 / x)=\arctan (x) .
$$

Hence, with $x=n y / \pi$,

$$
\frac{1}{2}+\frac{1}{\pi} \arctan (n y / \pi)=1+\frac{1}{\pi} \arctan (-\pi /(n y))
$$

3 For $x \in \mathbb{R}$

$$
f_{X_{n}}(x)=\frac{1}{\pi} \frac{n}{1+n^{2} x^{2}} \quad x \in \mathbb{R} .
$$

(i) Convergence in r th mean to zero;

$$
E_{f_{X_{n}}}\left[\left|X_{n}\right|^{r}\right]=\int_{-\infty}^{\infty} \frac{1}{\pi} \frac{n|x|^{r}}{1+n^{2} x^{2}}=\frac{2}{\pi} \int_{0}^{\infty} \frac{n x^{r}}{1+n^{2} x^{2}}
$$

This integral is divergent if $r \geq 1$, but convergent to zero as $n \longrightarrow \infty$ if $0<r<1$. Thus, if we only consider r to take integer values, there is no convergence, but for $0<r<1$, $X_{n} \xrightarrow{r} X$.
(ii) Convergence in probability; for $\epsilon>0$,

$$
P\left[\left|X_{n}\right|<\epsilon\right]=F_{X_{n}}(\epsilon)-F_{X_{n}}(-\epsilon)=\frac{1}{\pi} \arctan (n \epsilon)-\frac{1}{\pi} \arctan (-n \epsilon) \longrightarrow 1
$$

as $n \longrightarrow \infty$. Hence $X_{n} \xrightarrow{p} X$.
5 Marks
Of course

$$
X_{n} \xrightarrow{r} X \text {, some } r>0 \quad \Longrightarrow \quad X_{n} \xrightarrow{p} X
$$

by general relationships between the modes of convergence.

4 Suppose $X_{n} \xrightarrow{p} 0$, so that for any $\epsilon>0$,

$$
\lim _{n \longrightarrow \infty} P\left[\left|X_{n}\right|>\epsilon\right]=0
$$

Now by iterated expectation, conditioning in turn on the partitioning events

$$
\left(\left|X_{n}\right| \leq \epsilon\right) \quad\left(\left|X_{n}\right|>\epsilon\right)
$$

we have

$$
\begin{aligned}
E\left[\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}\right] & =E\left[\left.\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}| | X_{n} \right\rvert\, \leq \epsilon\right] P\left[\left|X_{n}\right| \leq \epsilon\right]+E\left[\left.\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}| | X_{n} \right\rvert\,>\epsilon\right] P\left[\left|X_{n}\right|>\epsilon\right] \\
& \leq \frac{\epsilon}{1+\epsilon} \times P\left[\left|X_{n}\right| \leq \epsilon\right]+1 \times P\left[\left|X_{n}\right|>\epsilon\right] \\
& \longrightarrow \frac{\epsilon}{1+\epsilon} \quad \text { as } n \longrightarrow \infty .
\end{aligned}
$$

But this holds for arbitrary $\epsilon>0$, so

$$
E\left[\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}\right] \longrightarrow 0
$$

Conversely, suppose

$$
E\left[\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}\right] \longrightarrow 0
$$

Then, using the Chebychev Lemma and the hint

$$
P\left[\left|X_{n}\right|>\epsilon\right]=P\left[\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}>\frac{\epsilon}{1+\epsilon}\right] \leq\left(\frac{1+\epsilon}{\epsilon}\right) E\left[\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}\right] \longrightarrow 0
$$

as $n \longrightarrow \infty$. Thus

$$
P\left[\left|X_{n}\right|>\epsilon\right] \longrightarrow 0 \quad \therefore \quad X_{n} \xrightarrow{p} 0
$$

