MATH 556 - ASSIGNMENT 4

To be handed in not later than 5pm, 30th November 2006.
Please hand in during lectures, to Burnside 1235, or to the Mathematics Office Burnside 1005
1 Suppose that X has expectation zero, and finite variance σ^{2}. Prove that, for $t>0$,

$$
P[X \geq t] \leq \frac{\sigma^{2}}{\sigma^{2}+t^{2}}
$$

2 Suppose that X_{1}, \ldots, X_{n} are a random sample from a Cauchy distribution, and let

$$
Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}
$$

Find the limiting distribution (if it exists) of
(a) Y_{n}
(b) $T_{n}=\pi Y_{n} / n$.

Note, for any real x

$$
\arctan (x)=x+o(x)
$$

where $o(x)$ is a function such that

$$
\lim _{x \longrightarrow 0} \frac{o(x)}{x}=0
$$

that is, approximately, for small x

$$
\arctan (x) \bumpeq x .
$$

8 MARKS

3 Suppose that $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ form a sequence of random variables with pdfs given, for $n \geq 1$, by

$$
f_{X_{n}}(x)=\frac{1}{\pi} \frac{n}{1+n^{2} x^{2}} \quad x \in \mathbb{R} .
$$

Does X_{n} converge to zero
(a) in r th mean, for some r ?
(b) in probability?
as $n \longrightarrow \infty$. Justify your answers.
5 MARKS

4 Prove that $X_{n} \xrightarrow{p} 0$ if and only if

$$
\begin{equation*}
E\left[\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}\right] \longrightarrow 0 \quad \text { as } n \longrightarrow \infty \tag{1}
\end{equation*}
$$

Method: First assume $X_{n} \xrightarrow{p} 0$ and prove that equation (1) holds, then prove the converse. Use the Chebychev Lemma/Markov's Inequality. Note that

$$
x>\epsilon \quad \Longrightarrow \quad \frac{x}{1+x}>\frac{\epsilon}{1+\epsilon}
$$

for $x, \epsilon>0$.

