MATH 556 - ASSIGNMENT 3

To be handed in not later than 5pm, 16th November 2006.

 Please hand in during lectures, to Burnside 1235, or to the Mathematics Office Burnside 10051 Consider the three-level hierarchical model:
LEVEL $3: \lambda>0, r \in\{1,2, \ldots\} \quad$ Fixed parameters
LEVEL 2 : $\quad N \sim$ Poisson (λ)
LEVEL $1: \quad X \mid N=n \sim \operatorname{Gamma}(n+r / 2,1 / 2)$
Find
(a) The expectation of $X, E_{f_{X}}[X]$,
(b) The mgf of $X, M_{X}(t)$.

2 Suppose that X_{1}, \ldots, X_{r} are independent random variables such that, for each $i, X_{i} \sim N\left(\mu_{i}, 1\right)$, for fixed constants μ_{1}, \ldots, μ_{r}.
(a) Find the mgf of random variable Y defined by

$$
Y=\sum_{i=1}^{r} X_{i}^{2}
$$

6 MARKS
(b) Find the skewness of Y, ς, where

$$
\varsigma=\frac{E_{f_{Y}}\left[(Y-\mu)^{3}\right]}{\sigma^{3}}
$$

where μ and σ^{2} are the expectation and variance of f_{Y}.

3 In a branching process model, the total number of individuals in successive generations are random variables $S_{0}, S_{1}, S_{2}, \ldots$ Suppose that, in the passage from generation i to generation $i+1$, each of the s_{i} individuals observed in generation i gives rise to $N_{i j}$ offspring for $j=1, \ldots, s_{i}$ according to a pmf with corresponding pgf G_{N}.

In addition to the production of offspring, suppose that at each generation, immigration into the population is allowed, and that at generation i, K_{i} immigrants enter the population to go forward to the $i+1$ st generation, so that

$$
S_{i+1}=\sum_{j=1}^{s_{i}} N_{i j}+K_{i}
$$

where $K_{0}, K_{1}, K_{2}, \ldots$ are iid random variables, with $\operatorname{pgf} G_{K}$, that are independent of all $N_{i j}$.
Find the pgf of S_{i+1} in terms of the pgf of random variable S_{i} and G_{K}.

