
MATH 556 - ASSIGNMENT 1 SOLUTIONS

1. For the discrete variables concerned
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and the joint pdf must sum to 1, we have c = e−2φ/(2φ)
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(b) Using similar arguments, for x = 0, 1, 2, . . . ,

fX(x) = P [X = x] =
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and hence
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x = 0, 1, 2, . . .

and zero otherwise. By symmetry of form, the marginal for Y is identical.
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(c) By direct calculation, for integer r > 0,
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For r = 0, P [X + Y = 0] = P [X = 0, Y = 0] = 0.
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(d) The expectation of X is given by
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2. By independence the full joint pdf for the random variables associated with A1 and A2 is

fR1,T1,R2,T2(r1, t1, r2, t2) =
r1r2

π2
0 ≤ t1, t2 < 2π, 0 < r1, r2 < 1.

The probability of interest can be represented as an integral of this joint pdf over a region C defined by

C = {(r1, t1, r2, t2) : described circle is contained entirely within D} (1)

that is we wish to compute
∫∫∫∫

C
fR1,T1,R2,T2(r1, t1, r2, t2)dr2dt2dr1dt1.

There are many ways to formulate the solution; one simple one involves conditioning on the position
of the point A1, that is, conditioning on a specific (r1, t1) pair, then integrating out over these variables
with respect to their joint density. Given (R1, T1) = (r1, t1), we can deduce that the circle of interest
lies within D if A2 lies within a circle of radius 1 − r1 centered at A1; see diagram below. However,

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

A1

r1

1 − r1

(R2, T2) are drawn independently of (R1, T1), so given (R1, T1) = (r1, t1), the probability that A2 lies
within a circle C1 of radius 1− r1 centered at A1 is given by the integral

∫∫

C1

fR2,T2(r2, t2)dr2dt2 =
∫ 2π

0

∫ 1−r1

0

r2

π
dr2dt2 = (1− r1)2 0 < r1 < 1

Thus the integral in equation (1) can be computed by integrating this quantity over the distribution of
(R1, T1); the probability of interest is thus

∫∫

D
(1− r1)2fR1,T1(r1, t1)dr1dt1 =

∫ 2π

0

∫ 1

0
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π
dr1dt1 =

1
6

By using a change of variables from polar to Cartesian coordinates, it follows in a straightforward
fashion that the distribution of the points being selected is uniform on the unit disc.
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3. (a) For j = 0, 1, 2, . . .,

P [X = j] =
P [X = j]
P [X ≥ j]

P [X ≥ j] =
P [(X = j) ∩ (X ≥ j)]

P [X ≥ j]
= P [X = j | X ≥ j]P [X ≥ j]

so therefore pj = hjSj−1 where Si = P [X > i]. Hence

j = 0 : p0 = h0

j = 1 : p1 = h1S0 = h1(1− p0) = h1(1− h0)
j = 2 : p2 = h2S1 = h2(1− p0 − p1) = h2(1− h0 − h1(1− h0)) = h2(1− h0)(1− h1)

and in general

pj = hj

j−1∏

i=1

(1− hi)

(b) Directly from above

Sj = SX(j) = P [X > j] =
j∏

i=1

(1− hi)
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