MATH 556-ASSIGNMENT 1 SOLUTIONS

1. For the discrete variables concerned
(a) As

$$
\begin{aligned}
\sum_{x=0}^{\infty} \sum_{y=0}^{\infty} \frac{(x+y) \phi^{x+y}}{x!y!} & =\sum_{x=0}^{\infty} \frac{\phi^{x}}{x!}\left\{\sum_{y=0}^{\infty} \frac{(x+y) \phi^{y}}{y!}\right\}=\sum_{x=0}^{\infty} \frac{\phi^{x}}{x!}\left\{x \sum_{y=0}^{\infty} \frac{\phi^{y}}{y!}+\sum_{y=1}^{\infty} \frac{\phi^{y}}{(y-1)!}\right\} \\
& =\sum_{x=0}^{\infty} \frac{\phi^{x}}{x!}\left\{x \sum_{y=0}^{\infty} \frac{\phi^{y}}{y!}+\phi \sum_{y=0}^{\infty} \frac{\phi^{y}}{y!}\right\}=\sum_{x=0}^{\infty} \frac{\phi^{x}}{x!}\left\{x e^{\phi}+\phi e^{\phi}\right\} \\
& =e^{\phi}\left\{\sum_{x=1}^{\infty} \frac{\phi^{x}}{(x-1)!}+\phi \sum_{x=0}^{\infty} \frac{\phi^{x}}{x!}\right\}=e^{\phi}\left\{\phi \sum_{x=0}^{\infty} \frac{\phi^{x}}{x!}+\phi \sum_{x=0}^{\infty} \frac{\phi^{x}}{x!}\right\} \\
& =e^{\phi}\left(\phi e^{\phi}+\phi e^{\phi}\right)=2 \phi e^{2 \phi}
\end{aligned}
$$

and the joint pdf must sum to 1 , we have $c=e^{-2 \phi} /(2 \phi)$
3 Marks
(b) Using similar arguments, for $x=0,1,2, \ldots$,

$$
f_{X}(x)=P[X=x]=\sum_{y=0}^{\infty} f_{X, Y}(x, y)=c \frac{\phi^{x}}{x!} \sum_{y=0}^{\infty} \frac{(x+y) \phi^{x+y}}{x!y!}=c \frac{\phi^{x}}{x!}\left(x e^{\phi}+\phi e^{\phi}\right)
$$

and hence

$$
f_{X}(x)=\frac{\phi^{x} e^{-\phi}(x+\phi)}{2 \phi x!} \quad x=0,1,2, \ldots
$$

and zero otherwise. By symmetry of form, the marginal for Y is identical.
2 Marks
(c) By direct calculation, for integer $r>0$,

$$
\begin{aligned}
P[X+Y=r] & =\sum_{x=0}^{\infty} P[X=x, Y=r-x]=\sum_{x=0}^{\infty} f_{X, Y}(x, r-x) \\
& =c \sum_{x=0}^{r} \frac{r \phi^{r}}{x!(r-x)!}=\frac{c \phi^{r}}{(r-1)!} \sum_{x=0}^{r} \frac{r!}{x!(r-x)!}=\frac{c \phi^{r}}{(r-1)!} 2^{r}=\frac{(2 \phi)^{r} e^{-2 \phi}}{2 \phi(r-1)!}
\end{aligned}
$$

For $r=0, P[X+Y=0]=P[X=0, Y=0]=0$.
2 Marks
(d) The expectation of X is given by

$$
\begin{aligned}
E_{f_{X}}[X] & =\sum_{x=0}^{\infty} x f_{X}(x)=\sum_{x=0}^{\infty} x \frac{\phi^{x} e^{-\phi}(x+\phi)}{2 \phi x!}=\frac{e^{-\phi}}{2 \phi} \sum_{x=1}^{\infty} \frac{\phi^{x}(x+\phi)}{(x-1)!} \\
& =\frac{e^{-\phi}}{2 \phi} \sum_{x=1}^{\infty} \frac{\phi^{x}((x-1)+(1+\phi))}{(x-1)!}=\frac{e^{-\phi}}{2 \phi}\left\{\sum_{x=1}^{\infty} \frac{(x-1) \phi^{x}}{(x-1)!}+\sum_{x=1}^{\infty} \frac{\left.(1+\phi) \phi^{x}\right)}{(x-1)!}\right\} \\
& =\frac{e^{-\phi}}{2 \phi}\left\{\sum_{x=2}^{\infty} \frac{\phi^{x}}{(x-2)!}+\sum_{x=1}^{\infty} \frac{\left.(1+\phi) \phi^{x}\right)}{(x-1)!}\right\}=\frac{e^{-\phi}}{2 \phi}\left\{\phi^{2} \sum_{x=0}^{\infty} \frac{\phi^{x}}{x!}+(1+\phi) \phi \sum_{x=0}^{\infty} \frac{\phi^{x}}{x!}\right\} \\
& =\frac{e^{-\phi}}{2 \phi}\left\{\phi^{2} e^{\phi}+(1+\phi) \phi e^{\phi}\right\}=\frac{\phi^{2}+(1+\phi) \phi}{2 \phi}=\phi+\frac{1}{2}
\end{aligned}
$$

2. By independence the full joint pdf for the random variables associated with A_{1} and A_{2} is

$$
f_{R_{1}, T_{1}, R_{2}, T_{2}}\left(r_{1}, t_{1}, r_{2}, t_{2}\right)=\frac{r_{1} r_{2}}{\pi^{2}} \quad 0 \leq t_{1}, t_{2}<2 \pi, 0<r_{1}, r_{2}<1 .
$$

The probability of interest can be represented as an integral of this joint pdf over a region \mathcal{C} defined by

$$
\begin{equation*}
\mathcal{C}=\left\{\left(r_{1}, t_{1}, r_{2}, t_{2}\right): \text { described circle is contained entirely within } \mathcal{D}\right\} \tag{1}
\end{equation*}
$$

that is we wish to compute

$$
\iiint \int_{\mathcal{C}} f_{R_{1}, T_{1}, R_{2}, T_{2}}\left(r_{1}, t_{1}, r_{2}, t_{2}\right) d r_{2} d t_{2} d r_{1} d t_{1} .
$$

There are many ways to formulate the solution; one simple one involves conditioning on the position of the point A_{1}, that is, conditioning on a specific $\left(r_{1}, t_{1}\right)$ pair, then integrating out over these variables with respect to their joint density. Given $\left(R_{1}, T_{1}\right)=\left(r_{1}, t_{1}\right)$, we can deduce that the circle of interest lies within \mathcal{D} if A_{2} lies within a circle of radius $1-r_{1}$ centered at A_{1}; see diagram below. However,

(R_{2}, T_{2}) are drawn independently of $\left(R_{1}, T_{1}\right)$, so given $\left(R_{1}, T_{1}\right)=\left(r_{1}, t_{1}\right)$, the probability that A_{2} lies within a circle \mathcal{C}_{1} of radius $1-r_{1}$ centered at A_{1} is given by the integral

$$
\iint_{\mathcal{C}_{1}} f_{R_{2}, T_{2}}\left(r_{2}, t_{2}\right) d r_{2} d t_{2}=\int_{0}^{2 \pi} \int_{0}^{1-r_{1}} \frac{r_{2}}{\pi} d r_{2} d t_{2}=\left(1-r_{1}\right)^{2} \quad 0<r_{1}<1
$$

Thus the integral in equation (1) can be computed by integrating this quantity over the distribution of (R_{1}, T_{1}); the probability of interest is thus

$$
\iint_{\mathcal{D}}\left(1-r_{1}\right)^{2} f_{R_{1}, T_{1}}\left(r_{1}, t_{1}\right) d r_{1} d t_{1}=\int_{0}^{2 \pi} \int_{0}^{1} \frac{\left(1-r_{1}\right)^{2} r_{1}}{\pi} d r_{1} d t_{1}=\frac{1}{6}
$$

By using a change of variables from polar to Cartesian coordinates, it follows in a straightforward fashion that the distribution of the points being selected is uniform on the unit disc.
3. (a) For $j=0,1,2, \ldots$,

$$
P[X=j]=\frac{P[X=j]}{P[X \geq j]} P[X \geq j]=\frac{P[(X=j) \cap(X \geq j)]}{P[X \geq j]}=P[X=j \mid X \geq j] P[X \geq j]
$$

so therefore $p_{j}=h_{j} S_{j-1}$ where $S_{i}=P[X>i]$. Hence

$$
\begin{array}{ll}
j=0 & : \\
p_{0}=h_{0} \\
j=1 & : \\
j=2 & p_{1}=h_{1} S_{0}=h_{1}\left(1-p_{0}\right)=h_{1}\left(1-h_{0}\right) \\
j=2 & : p_{2}=h_{2} S_{1}=h_{2}\left(1-p_{0}-p_{1}\right)=h_{2}\left(1-h_{0}-h_{1}\left(1-h_{0}\right)\right)=h_{2}\left(1-h_{0}\right)\left(1-h_{1}\right)
\end{array}
$$

and in general

$$
p_{j}=h_{j} \prod_{i=1}^{j-1}\left(1-h_{i}\right)
$$

(b) Directly from above

$$
S_{j}=S_{X}(j)=P[X>j]=\prod_{i=1}^{j}\left(1-h_{i}\right)
$$

5 Marks

