MATH 556 - ASSIGNMENT 1

To be handed in not later than 5pm, 28th September 2006. Please hand in during lectures, to Burnside 1235, or to the Mathematics Office Burnside 1005

1. Suppose *X* and *Y* are discrete random variables having joint pmf given by

$$f_{X,Y}(x,y) = c \frac{(x+y)\phi^{x+y}}{x!y!}$$
 $x, y \ge 0$

and zero otherwise, for constant *c* and parameter $\phi > 0$.

Find expressions for each of the following quantities.

- (a) The constant *c*.
- (b) The marginal pmf for X, f_X .
- (c) The probability

P[X+Y=r]

for general $r \ge 0$.

(d) The expectation of X.

10 MARKS

2. Two points A_1 and A_2 are selected independently from the interior of the unit disc \mathcal{D} (the disc centered at the origin, with radius 1), according to the following probability law; a point A is identified using polar coordinate random variables (R, T) (R is the radius, T the angle in radians measured from the x-axis), and the joint pdf of (R, T) is given by

$$f_{R,T}(r,t) = \frac{r}{\pi}$$
 $0 \le t < 2\pi, 0 < r < 1.$

and zero otherwise.

Find the probability that the circle centered at A_1 with radius $|A_1A_2|$ (that is, the distance between A_1 and A_2) is contained entirely within \mathcal{D} .

Hint: For random point A and set B,

$$P[A \in B] = \int_{\mathcal{B}} \int f_{R,T}(r,t) \, dr dt \equiv \int_{\mathcal{B}} \int g(x,y) \, dx dy$$

where the second integral is obtained after changing variables to Cartesian coordinates, for some integrand g(x, y).

10 Marks

3. A pmf for discrete random variable *X* taking values on the non-negative integers $\{0, 1, 2, ...\}$ is specified by the countable set of probabilities $\{p_0, p_1, p_2, ...\}$, where $P[X = j] = p_j$ for each *j*. An equivalent specification in terms of the hazard probabilities, $\{h_0, h_1, h_2, ...\}$, is also possible, where

$$h_j = h_X(j) = P[X = j \mid X \ge j].$$

Find expressions for

- (a) $p_j, j \ge 0$,
- (b) the survivor function, $S_X(x) = P[X > x]$.

in terms of $\{h_0, h_1, h_2, ...\}$

5 Marks

MATH 556 ASSIGNMENT 1