MATH 556 - ASSIGNMENT 1

To be handed in not later than 5pm, 28th September 2006.

Please hand in during lectures, to Burnside 1235, or to the Mathematics Office Burnside 1005

1. Suppose X and Y are discrete random variables having joint pmf given by

$$
f_{X, Y}(x, y)=c \frac{(x+y) \phi^{x+y}}{x!y!} \quad x, y \geq 0
$$

and zero otherwise, for constant c and parameter $\phi>0$.
Find expressions for each of the following quantities.
(a) The constant c.
(b) The marginal pmf for X, f_{X}.
(c) The probability

$$
P[X+Y=r]
$$

for general $r \geq 0$.
(d) The expectation of X.

10 MARKS
2. Two points A_{1} and A_{2} are selected independently from the interior of the unit disc \mathcal{D} (the disc centered at the origin, with radius 1), according to the following probability law; a point A is identified using polar coordinate random variables (R, T) (R is the radius, T the angle in radians measured from the x-axis), and the joint pdf of (R, T) is given by

$$
f_{R, T}(r, t)=\frac{r}{\pi} \quad 0 \leq t<2 \pi, 0<r<1
$$

and zero otherwise.
Find the probability that the circle centered at A_{1} with radius $\left|A_{1} A_{2}\right|$ (that is, the distance between A_{1} and A_{2}) is contained entirely within \mathcal{D}.
Hint: For random point A and set \mathcal{B},

$$
P[A \in B]=\int_{\mathcal{B}} \int f_{R, T}(r, t) d r d t \equiv \int_{\mathcal{B}} \int g(x, y) d x d y
$$

where the second integral is obtained after changing variables to Cartesian coordinates, for some integrand $g(x, y)$.

10 MARKS
3. A pmf for discrete random variable X taking values on the non-negative integers $\{0,1,2, \ldots\}$ is specified by the countable set of probabilities $\left\{p_{0}, p_{1}, p_{2}, \ldots\right\}$, where $P[X=j]=p_{j}$ for each j. An equivalent specification in terms of the hazard probabilities, $\left\{h_{0}, h_{1}, h_{2}, \ldots\right\}$, is also possible, where

$$
h_{j}=h_{X}(j)=P[X=j \mid X \geq j]
$$

Find expressions for
(a) $p_{j}, j \geq 0$,
(b) the survivor function, $S_{X}(x)=P[X>x]$.
in terms of $\left\{h_{0}, h_{1}, h_{2}, \ldots\right\}$

