
Part III

Non-Parametric Statistics
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Non-Parametric Statistics

All of the previous statistical analysis methods studied (t-tests,
ANOVA, Regression, General Linear Modelling) have depended
heavily on distributional assumptions.

i.e. we assume that the data are Normally distributed.

We now seek statistical procedures that do not rely on this strong
assumption. We term these methods

NON-PARAMETRIC

or

DISTRIBUTION-FREE

They substitute large sample approximations for the
distributional assumptions.
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3.1 Distribution-free tests for Categorical Data

Categorical data are data in which experimental units are allocated
to one of a number of categories according to their characteristics.
The categories are defined by one or more factors

Examples:

I Female/Male - two categories

I Smoker/Former Smoker/Non Smoker - three categories.
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Doll and Hill Data
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Juvenile Delinquency and Spectacle-Wearing
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The data are counts of experimental units that fall into each
category. Suppose

1. There are n experimental units in the study

2. There are k categories

3. The probabilities of the k outcomes are p1, . . . , pk , where

p1 + · · ·+ pk = 1

4. The experimental units are independent

5. The counts in the k categories are n1, . . . , nk , where

n1 + · · ·+ nk = n
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The experimental design is termed a Multinomial Experiment

Note: The categories can arise as combinations of factor levels; we
can have

I one-way classification (categories of a single factor, A)

I two-way classification (categories defined by combinations of
levels of two factors, A and B)

and so on. The counts table is often called a contingency table
and the entries in the table are called cells.

The idea can be extended to larger numbers of factors
(A, B, C , . . .) to produce a multi-way table. We will focus on at
most two-way tables, with r rows and c columns, yielding an r × c
table.
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What kinds of tests can be carried out for such data ?

1. Tests about p1, . . . , pk

I H0 : p1 = · · · = pk = 1/k
I H0 : p1, . . . , pk determined by some parametric distribution

(Normal, Poisson etc.)

2. Tests about the factors A and B

I are A and B dependent ?
I i.e. does classification by A influence classification by B.
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Chi-Squared Test

For one-way tables: suppose that a null hypothesis completely
specifies p1, . . . , pk , that is, we have H0 of the form

H0 : p1 = p
(0)
1 , . . . , pk = p

(0)
k

where p
(0)
1 , . . . , p

(0)
k are fixed probabilities. For example, for k = 3,

H0 : p1 = p2 = p3 = 1/3

or
H0 : p1 = 1/2, p2 = p3 = 1/4
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To test this hypothesis against the general alternative hypothesis

Ha : H0 not true.

we use the test statistic

X 2 =
k∑

i=1

(
ni − np

(0)
i

)2

np
(0)
i

If H0 is true,
X 2 ∼: Chi-squared(k − 1).

that is, X 2 is approximately distributed as Chi-squared(k − 1).
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In this formula

I ni is the observed count in cell i

I np
(0)
i is the expected count in cell i if H0 is true.

Sometimes the formula is written

X 2 =
k∑

i=1

(Oi − Ei )
2

Ei

where Oi is the observed count, and Ei is the expected count.

If
X 2 > Chisqα(k − 1)

then we reject H0 at the α significance level, where Chisqα(k − 1)
is the 1− α (right-hand) tail critical value of the Chi-squared
distribution with k − 1 degrees of freedom.
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This method can be extended in the one-way case to test
distribution assumptions, that is, for example

H0 : Data Normally distributed

or
H0 : Data Poisson distributed

Unfortunately this facility is not available in SPSS; direct
calculation is possible but involved.
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For the two-way table, we can test the hypothesis

H0 : Factor A and Factor B levels are assigned independently

that is, classification by factor A is independent of classification by
factor B. We use the same test statistic that can be rewritten

X 2 =
r∑

i=1

c∑

j=1

(nij − n̂ij)
2

n̂ij

where

n̂ij =
ni .n.j

n
ni . =

c∑

j=1

nij n.j =
r∑

i=1

nij .

The terms ni . and n.j are the row and column totals for row i and
column j respectively.
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If H0 is true

X 2 ∼: Chi-squared((r − 1)(c − 1))

i.e. the degrees of freedom quantity is (r − 1)(c − 1). Otherwise
the test proceeds as before: we check whether

X 2 > Chisqα((r − 1)(c − 1))

and if so, we reject H0.
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Example (DNA Sequence Data)

Counts of Nucleotides A,C,G,T in a genomic segment related to
the breast cancer gene BRCA2.

Example (Eye and Hair Colour Data)

The assignment of hair and eye colour in a sample of humans

See handout.
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Note: For the Chi-squared test to be valid, we need the expected
cell counts

np
(0)
i i = 1, . . . , k

or
n̂ij i = 1, . . . , r , j = 1, . . . , c

to be sufficiently large. The convention is to require the expected
value to be greater than five.
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Note: If r = c = 2 we have a 2× 2 table, and another exact test
can be used which does not rely on the large sample approximation

Fisher’s Exact Test

I another test for independence of assignment of the row and
column factor levels

I test statistic and null distribution are complicated (based on
the hypergeometric distribution)

I SPSS computes test statistic and p-value.
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Example (Juvenile Delinquency and Spectacle Wearing)

Is there any association between the two factors ?

A : Spectacle Wearing (Yes/No)

B : Juvenile Delinquent (Yes/No)

Delinquent
Yes No ni .

Spectacles
Yes 1 5 6
No 8 2 10
n.j 9 7 16
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Example (Juvenile Delinquency and Spectacle Wearing)

Chi-squared Test:
X 2 = 6.112

Compare with Chi-squared((r − 1)(c − 1)) = Chi-squared(1); we
have

Chi-squared0.05(1) = 3.841

and a p-value of 0.013. Therefore we reject H0.

Fisher’s Exact Test: p-value is 0.035 (1-sided) or 0.024 (2-sided).

Thus we reject H0 and we have evidence of association between
the factors.
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Case-Control Studies

A case-control study is an observational study where participants
are selected for the study with regard to their disease status.

I a sample of cases (disease sufferers)

I a sample of controls (healthy patients)

We investigate the possible association between disease status and
a factor that takes two levels. A 2× 2 table of counts is formed for
all combinations of disease status/factor level.

280



Example (BCG Vaccination and Leprosy)

Disease Status : Leprosy Sufferer (Yes/No)

Factor : Vaccination Scar (Yes/No)

Disease Status
Case Control
Yes No ni .

Scar
Yes 101 554 655
No 159 446 605
n.j 260 1000 1260

Is there an association ? Does vaccination induce leprosy ?
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The Chi-squared test is potentially not valid here because of the
design. An alternative test statistic is based on the odds ratio

O.R. =
n11n22

n12n21
= ψ̂

say. The test statistic is

Z =
log ψ̂

s.e.(log ψ̂)

where

s.e.(log ψ̂) =

√
1

n11
+

1

n12
+

1

n21
+

1

n22
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That is,

Z =
log n11 + log n22 − log n12 − log n21√

1

n11
+

1

n12
+

1

n21
+

1

n22

Under

H0 : No association between factor and disease status

it follows that
Z ∼: N(0, 1)

Here log means ln or natural log.
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Example (BCG Vaccination and Leprosy)

n11 = 101, n12 = 554, n21 = 159, n22 = 446

Therefore

ψ̂ =
n11n22

n12n21
= 0.511 log ψ̂ = −0.671

and

s.e.(log ψ̂) =

√
1

n11
+

1

n12
+

1

n21
+

1

n22
= 0.142

so

Z =
−0.671

0.142
= −4.717

For a text at α = 0.05, the two-sided critical value is ±1.96, so we

Reject H0.
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Example (Smoking and Lung Cancer)

n11 = 647, n12 = 622, n21 = 2, n22 = 27

Therefore

log ψ̂ = log
647× 27

2× 622
= 2.642

and

s.e.(log ψ̂) =

√
1

647
+

1

2
+

1

622
+

1

27
= 0.735

so

Z =
2.642

0.735
= 3.590

For a text at α = 0.05, the two-sided critical value is ±1.96, so we

Reject H0

and report evidence for association.
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3.2 Single Population Tests

We seek non-parametric or distribution-free tests for hypotheses
relating to single samples, the equivalents of one-sample Z - or
T -tests, which rely on the normality of the samples.

Normally these tests are formulated in terms of ranks of the data
to give

Rank Tests
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For example, if the data are

0.24 3.16 1.97 2.10 0.92

we sort them into ascending order, and assign ranks in order

0.24 0.92 1.97 2.10 3.16
Rank 1 2 3 4 5

The tests depend on the behaviour of statistics computed in terms
of the ranks, and rely on a large sample justification.
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Rather than test the mean, we test the median, xMED, where

Pr[Observation ≤ xMED] =
1

2

i.e. the halfway point of the distribution.

The sample median is the halfway point of the sorted sample.

Let η denote the population median. We wish to test, for example,

H0 : η = η0

See Handout
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3.3 Comparing Two Populations : Independent Samples

We seek a non-parametric equivalent to the two-sample t-test.

Instead of testing population means,

H0 : µ1 = µ2

we test population medians

H0 : η1 = η2
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One- and Two- sample tests

I In the one sample case we use the

SIGN TEST

to test hypotheses about η

I In the two sample case we use the

WILCOXON RANK SUM or MANN-WHITNEY U test.

See Handout
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Note: For the MWW test

I Textbook convention : Label the samples so that n1 > n2

(i.e. sample 1 is the one with the larger sample size)

I SPSS convention : Label the samples such that

xMED1 < xMED2

(i.e. sample 1 is the one with the smaller median) and only
test

H0 : η1 = η2
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Other two sample tests are available:

I Kolmogorov-Smirnov Test

I Moses Extreme Reactions Test

I Wald-Wolfowitz Runs Test

None make distributional assumptions, all perform best when the
sample size is large.
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3.4 Comparing Two Dependent Samples

Suppose we have repeat measurements on the same experimental
units.

In this case, the within-subject data are dependent; we have
pairing of observations.

We can use the

Wilcoxon Signed Rank Test

See Handout
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3.4 Comparing Three or More Populations

We now seek non-parametric equivalents to ANOVA useful for
different designs. We study tests for

(a) the Completely Randomized Design (CRD)

(b) the Randomized Block Design (RBD)

For (a) we use the

Kruskal-Wallis Test

and for (b) we use the

Friedman Test.

See Handout
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Summary of the Non-Parametric Tests

I Chi-Squared Test : Goodness of Fit/independence in
contingency tables

I Sign Test : One Sample (equivalent of one sample t-test)

I Mann-Whitney-Wilcoxon : Two Sample (equivalent of two
sample t-test)

I Wilcoxon Signed Rank : Paired Data

I Kruskal-Wallis : one-way layout, multigroup comparison -
equivalent of ANOVA for CRD.

I Friedman : two-way blocked layout, equivalent of two-way
ANOVA for RBD.
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Pros:

I No distributional assumptions

I Applicable for most sorts of data

I Large sample approximations make them easy to implement

Cons:

I Low power compared to parametric tests (i.e. often do not
reject H0 when they should - prone to Type II Error)

I Small sample null distributions difficult to compute.
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3.6 Rank Correlation

To measure the association between two variables, we previously
used the correlation coefficient, r ; for data x1, . . . , xn and
y1, . . . , yn,

r =
SSxy√

SSxxSSyy

where

SSxy =
n∑

i=1

(xi−x)(yi−y) SSxx =
n∑

i=1

(xi−x)2 SSyy =
n∑

i=1

(yi−y)2

r is a measure of the linear association between X and Y

Pearson Product Moment Coefficient of Correlation
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A more general measure of association is the

Spearman Rank Correlation Coefficient

We compute this as follows:

1. For each sample separately, compute the ranks of the data,
denote the ranks for the data x1, . . . , xn and y1, . . . , yn by
u1, . . . , un and v1, . . . , vn respectively.

2. Compute

rS =
SSuv√

SSuuSSvv

ie the Pearson correlation between the ranks.

rS is the Spearman Correlation.
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Notes:

1. If there are no ties in the data

rS = 1−
6

n∑

i=1

d2
i

n(n2 − 1)

where di = ui − vi .

2. rS is potentially a measure of the non-linear association
between X and Y .

The calculation can be applied directly to rank data i.e.
u1, . . . , un and v1, . . . , vn can be preference ranks given by two
observers.
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Tests for rS

To test
H0 : ρ = 0

vs

(1) Ha : ρ > 0

(2) Ha : ρ < 0

(3) Ha : ρ 6= 0

We may use rS as a test statistic. The distribution of rS under H0

is tabulated on p 864 of McClave and Sincich.
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If Spearmanα is the α tail quantile of the null distribution, we have
the following rejection regions:

(1) : Reject H0 if rS > Spearmanα

(2) : Reject H0 if rS < −Spearmanα

(3) : Reject H0 if |rS | > Spearmanα/2
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The Role of Randomization and Permutation Tests

Randomization or Permutation procedures are useful for
computing exact null distributions for non-parametric test
statistics when sample sizes are small.

We focus first on two sample comparisons; suppose that two data
samples x1 . . . , xn1 and y1 . . . , yn2 (where n1 ≥ n2) have been
obtained, and we wish to carry out a comparison of the two
populations from which the samples are drawn. The Wilcoxon test
statistic, W , is the sum of the ranks for the second sample. The
permutation test proceeds as follows:
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1. Let n = n1 + n2. Assuming that there are no ties, the pooled
and ranked samples will have ranks

1 2 3 . . . n

2. The test statistic is W = R2, the rank sum for sample two
items. For the observed data, W will be the sum of n2 of the
ranks given in the list above.

3. If the null hypothesis

H0 : No difference between population 1 and population 2

were true, then we would expect no pattern in the
arrangements of the group labels when sorted into ascending
order. That is, the sorted data would give rise a random
assortment of group 1 and group 2 labels.
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4. To obtain the exact distribution of W under H0 (which is
what we require for the assessment of statistical significance),
we could compute W for all possible permutations of the
group labels, and then form the probability distribution of the
values of W . We call this the permutation null distribution.

5. But W is a rank sum, so we can compute the permutation
null distribution simply by tabulating all possible subsets of
size n2 of the set of ranks {1, 2, 3, . . . , n}.
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6. There are (
n

n2

)
=

n!

n1! n2!
= N

say possible subsets of size n2. For example, for n = 6 and
n2 = 2, the number of subsets of size n2 is

(
8

2

)
=

8!

6! 2!
= 28

However, the number of subsets increases dramatically as n
increases; for n1 = n2 = 10, so that n = 20, the number of
subsets of size n2 is

(
20

10

)
=

20!

10! 10!
= 184756

305



7. The exact rejection region and p-value are computed from the
permutation null distribution. Let Wi , i = 1, . . . , N denote the
value of the Wilcoxon statistic for the N possible subsets of
the ranks of size n2. The probability that the test statistic,
W , is less than or equal to w is

Pr[W ≤ w ] =
Number of Wi ≤ w

N

We seek the values of w that give the appropriate rejection
region, R, so that

Pr[W ∈ R] =
Number of Wi ∈ R

N
= α

It may not be possible to find critical values, and define R, so
that this probability is exactly α as the distribution of W is
discrete.
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Simple Example
Suppose n1 = 7 and n2 = 3. There are

(
10

3

)
=

10!

7! 3!
= 120

subsets of the ranks {1, 2, 3, . . . , 10} of size 3. The subsets are
listed below, together with the rank sums.
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Ranks W Ranks W Ranks W Ranks W
1 2 3 6 1 7 8 16 2 7 10 19 4 6 7 17
1 2 4 7 1 7 9 17 2 8 9 19 4 6 8 18
1 2 5 8 1 7 10 18 2 8 10 20 4 6 9 19
1 2 6 9 1 8 9 18 2 9 10 21 4 6 10 20
1 2 7 10 1 8 10 19 3 4 5 12 4 7 8 19
1 2 8 11 1 9 10 20 3 4 6 13 4 7 9 20
1 2 9 12 2 3 4 9 3 4 7 14 4 7 10 21
1 2 10 13 2 3 5 10 3 4 8 15 4 8 9 21
1 3 4 8 2 3 6 11 3 4 9 16 4 8 10 22
1 3 5 9 2 3 7 12 3 4 10 17 4 9 10 23
1 3 6 10 2 3 8 13 3 5 6 14 5 6 7 18
1 3 7 11 2 3 9 14 3 5 7 15 5 6 8 19
1 3 8 12 2 3 10 15 3 5 8 16 5 6 9 20
1 3 9 13 2 4 5 11 3 5 9 17 5 6 10 21
1 3 10 14 2 4 6 12 3 5 10 18 5 7 8 20
1 4 5 10 2 4 7 13 3 6 7 16 5 7 9 21
1 4 6 11 2 4 8 14 3 6 8 17 5 7 10 22
1 4 7 12 2 4 9 15 3 6 9 18 5 8 9 22
1 4 8 13 2 4 10 16 3 6 10 19 5 8 10 23
1 4 9 14 2 5 6 13 3 7 8 18 5 9 10 24
1 4 10 15 2 5 7 14 3 7 9 19 6 7 8 21
1 5 6 12 2 5 8 15 3 7 10 20 6 7 9 22
1 5 7 13 2 5 9 16 3 8 9 20 6 7 10 23
1 5 8 14 2 5 10 17 3 8 10 21 6 8 9 23
1 5 9 15 2 6 7 15 3 9 10 22 6 8 10 24
1 5 10 16 2 6 8 16 4 5 6 15 6 9 10 25
1 6 7 14 2 6 9 17 4 5 7 16 7 8 9 24
1 6 8 15 2 6 10 18 4 5 8 17 7 8 10 25
1 6 9 16 2 7 8 17 4 5 9 18 7 9 10 26
1 6 10 17 2 7 9 18 4 5 10 19 8 9 10 27
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There are 22 possible rank sums, {6, 7, 8, . . . , 25, 26, 27}; the
number of times each is observed is displayed in the table below,
with the corresponding probabilities and cumulative probabilities.

W 6 7 8 9 10 11 12 13 14 15 16
Frequency 1 1 2 3 4 5 7 8 9 10 10
Prob. 0.008 0.008 0.017 0.025 0.033 0.042 0.058 0.067 0.075 0.083 0.083
Cumulative Prob. 0.008 0.017 0.033 0.058 0.092 0.133 0.192 0.258 0.333 0.417 0.500

W 17 18 19 20 21 22 23 24 25 26 27
Frequency 10 10 9 8 7 5 4 3 2 1 1
Prob. 0.083 0.083 0.075 0.067 0.058 0.042 0.033 0.025 0.017 0.008 0.008
Cumulative Prob. 0.583 0.667 0.742 0.808 0.867 0.908 0.942 0.967 0.983 0.992 1.000
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Thus, for example, the probability that W = 19 is 0.075, with a
frequency of 9 out of 120. From this table, we deduce that

Pr[8 ≤ W ≤ 25] = 0.983− 0.033 = 0.950

implying that the two-sided rejection region for α = 0.05 is the set
R = {6, 7, 26, 27}.

310



Placenta Permeability Data

Example (Placenta Permeability Data)

Measurements of placenta permeability are made on two groups of
subjects.

The data and their ranks for are displayed below:

Group 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2

Obs. 0.73 0.80 0.83 1.04 1.38 1.45 1.46 1.64 1.89 1.91 0.74 0.88 0.9 1.15 1.21

Rank 1 3 4 7 10 11 12 13 14 15 2 5 6 8 9
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Placenta Permeability Data

Example

Thus the Wilcoxon statistic is

W = R2 = 2 + 5 + 6 + 8 + 9 = 30

Now, here n1 = 10 and n2 = 5. There are

(
15

5

)
=

15!

10! 5!
= 3003

subsets of the ranks {1, 2, 3, . . . , 15} of size 5.

In the permutation null distribution, the possible values of W are
{15, 16, . . . , 64, 65}; the probabilities are given below.
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Placenta Permeability Data

Example

W 15 16 17 18 19 20 21 22 23 24 25 26 27
Frequency 1 1 2 3 5 7 10 13 18 23 30 36 45
Prob. 0.000 0.000 0.001 0.001 0.002 0.002 0.003 0.004 0.006 0.008 0.010 0.012 0.015
Cumulative Prob. 0.000 0.001 0.001 0.002 0.004 0.006 0.010 0.014 0.020 0.028 0.038 0.050 0.065

W 28 29 30 31 32 33 34 35 36 37 38 39 40
Frequency 53 63 72 83 92 103 111 121 127 134 137 141 141
Prob. 0.018 0.021 0.024 0.028 0.031 0.034 0.037 0.040 0.042 0.045 0.046 0.047 0.047
Cumulative Prob. 0.082 0.103 0.127 0.155 0.185 0.220 0.257 0.297 0.339 0.384 0.430 0.477 0.523

W 41 42 43 44 45 46 47 48 49 50 51 52 53
Frequency 141 137 134 127 121 111 103 92 83 72 63 53 45
Prob. 0.047 0.046 0.045 0.042 0.040 0.037 0.034 0.031 0.028 0.024 0.021 0.018 0.015
Cumulative Prob. 0.570 0.616 0.661 0.703 0.743 0.780 0.815 0.845 0.873 0.897 0.918 0.935 0.950

W 54 55 56 57 58 59 60 61 62 63 64 65
Frequency 36 30 23 18 13 10 7 5 3 2 1 1
Prob. 0.012 0.010 0.008 0.006 0.004 0.003 0.002 0.002 0.001 0.001 0.000 0.000
Cumulative Prob. 0.962 0.972 0.980 0.986 0.990 0.994 0.996 0.998 0.999 0.999 1.000 1.000
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Placenta Permeability Data

Example

By inspection of the table, we see that

Pr[25 ≤ W ≤ 55] = 0.972− 0.038 = 0.934

and
Pr[24 ≤ W ≤ 56] = 0.980− 0.028 = 0.952
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Placenta Permeability Data

Example

Thus for a symmetric two-sided interval which contains at most
probability 0.95, we take the interval

{25, 26, . . . , 54, 55}

and hence define the rejection region

R = {16, 17, . . . , 23, 24, 56, 57, . . . , 64, 65}

Note that this choice of rejection region ensures that there is at
least probability 0.025 in each tail.

Thus in this example we do not reject the hypothesis of equal
medians.
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Normal Approximation
The permutation null distribution of W is displayed below.
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Permutation Null Distribution
Normal Approx.

Permutation Null Distribution with Normal Approximation

The normal approximation is given by

W ∼: Normal

(
n2(n1 + n2 + 1)

2
,
n1n2(n1 + n2 + 1)

12

)
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