
Part II

Linear Regression Modelling
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2. Linear regression Modelling

In the previous section, we attempted to explain the variation in an
observed response variable by fitting models with one or more
factors.

Factors are discrete variables taking different levels; in this section
we will now utilize continuous variables that can similarly explain
variation in an observed response.
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2.1 Simple Linear Regression

We will investigate models relating two quantities x and y through
equations of the form

y = ax + b

where a and b are constants (that is, a straight-line).

Variables x and y will not be treated exchangeably - we will regard
y as being a function of x .

Such models are deterministic, that is, if we know x (and the
values of the constants), we can compute y exactly without error.

A more useful model allows for the possibility that the system is
not observed perfectly, that is, we do not observe (x , y) pairs that
are always consistent with a simple functional relationship.
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Example (Pharmacokinetic Model)

If a dose of drug is taken at time x = 0, the amount
(concentration) of drug still in the bloodstream at time x is often
well-modelled by a simple equation. Let

I D denote the amount of drug taken at x = 0

I x time

I y? is the amount (concentration per unit volume) in the
bloodstream.

Then

y? =
D

V
exp{−λx}

where

I λ is the elimination rate

I V is the volume of bloodstream.
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Example (Pharmacokinetic Model (continued))

Taking logs of both sides, setting y = log y?, then

y = −λx + log(D/V ) = −λx + (log D − log V )

that is, y = ax + b where

I a = −λ

I b = (log D − log V )

However, in practice, when we measure concentration, we do so
with random error.
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2.1.1 Probabilistic Models

In a probabilistic model, we allow for the possibility that y is
observed with random error, that is,

y = ax + b + ERROR

where ERROR is a random term that is present due to imperfect
observation of the system due to (i) measurement error or (ii)
missing information.

Note that we do not treat x and y exchangeably; x is a fixed
observed variable that is measured without error, whereas y is an
observed variable that is measured with random error.

We model the variation in y as a function of x . We observe pairs
(xi , yi ), i = 1, . . . , n.

142



A Basic Probabilistic Model

Terminology:

I y - Dependent variable or independent variable

I x - Independent variable, or predictor, or covariate

The model we study takes the form

y = β0 + β1x + ε

where ε is a random error term, a random variable with mean zero
and finite variance (E [ε] = 0, Var [ε] = σ2); it represents the error
present in the measurement of y .

I β0 - Intercept parameter

I β1 - Slope parameter
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I β1 > 0 - increasing y with increasing x

I β1 < 0 - decreasing y with increasing x

I β1 = 0 - no relationship between x and y

Note:
E [Y |x ] = β0 + β1x

where E [Y |x ] is the expected value of Y for fixed value of x .

Recall the notation

I Y - a random variable with a probability distribution

I y - a fixed value that the variable Y can take.

Fundamental Problem: If we believe the straight-line model with
error is correct, how do we find the values of parameters β0 and
β1. We only have the observed data {(xi , yi ), i = 1, . . . , n}.
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2.1.2 Least Squares Fitting

We select the best values of β0 and β1 by minimizing the error in
fit. For two data points (x1, y1) and (x2, y2), the errors in fit are

e1 = y1 − (β0 + β1x1)

e2 = y2 − (β0 + β1x2)

respectively. But note that, potentially, e1 > 0 and e2 < 0 so there
is a possibility that these fitting errors cancel each other out.
Therefore we look at squared errors (as a large negative error is as
bad as a large positive error)

e2
1 = (y1 − (β0 + β1x1))

2

e2
2 = (y2 − (β0 + β1x2))

2
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For n data, we obtain n misfit squared errors

e2
1 , . . . , e2

n

We select β0 and β1 as the values of the parameters that minimize
SSE , where

SSE =
n∑

i=1

e2
i =

n∑

i=1

(yi − (β0 + β1xi ))
2

We wish to make the total misfit squared error as small as possible.

SSE - sum of squared errors - is similar to the SSE for ANOVA.
We could write

SSE = SSE (β0, β1)

to show the dependence of SSE on the parameters.

Minimization of SSE (β0, β1) is achieved analytically.
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Two routes: (i) calculus and (ii) geometric methods. It follows
that the best parameters β̂0 and β̂1 are given by

β̂1 =
SSxy

SSxx
β̂0 = y − β̂1x

where

I Sum of Squares SSxx :

SSxx =
n∑

i=1

(xi − x)2

I Sum of Squares SSxy :

SSxy =
n∑

i=1

(xi − x)(yi − y)
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β̂0 and β̂1 are the least-squares estimates

y = β̂0 + β̂1x

is the least-squares line of best fit. The fitted-values are

ŷi = β̂0 + β̂1xi i = 1, . . . , n

and the residuals or residual errors are

êi = yi − ŷi = yi − β̂0 − β̂1xi i = 1, . . . , n
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2.1.3 Model Assumptions for Least-Squares
To utilize least-squares for the probabilistic model

Y = β0 + β1x + ε

we make the following assumptions

1. The expected error E [ε] is zero so that

E [Y ] = β0 + β1x

2. The variance of the error, Var [ε], is constant and does not
depend on x .

3. The probability distribution of ε is a symmetric distribution
about zero (a stronger assumption is that ε is Normally
distributed).

4. The errors for two different measured responses are
independent, i.e. the error ε1 in measuring y1 at x1 is
independent of the error ε2 in measuring y2 at x2.
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2.1.4 Parameter Estimation: Estimating σ2

Using the LS procedure, we can construct an estimate of the error
or residual error variance

Recall that
Var [ε] = σ2

An estimate of σ2 is

σ̂2 =
SSE (β̂0, β̂1)

n − 2
= s2

say.
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Note that the denominator n − 2 is again a degrees of freedom
parameter of the form

TOTAL NUMBER − NUMBER OF PARAMETERS
OF DATA ESTIMATED

or n − p, where in the simple linear regression, p = 2 (β̂0 and β̂1).
Note also that

SSE (β̂0, β̂1) =
n∑

i=1

(yi − ŷi )
2 = SSyy − β̂1SSxy

where

SSyy =
n∑

i=1

(yi − y)2
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Estimation and Testing for Slope

In the model where
E [Y ] = β0 + β1x

it is of interest to test the hypothesis

H0 : β1 = 0

Ha : β1 6= 0

i.e. H0 implies that there is no systematic contribution of x to the
variation of y .
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To test H0 vs Ha we us the test statistic

t =
β̂1

e.s.e(β̂1)
=

β̂1

s
β̂1

where e.s.e(β̂1) is the Estimated Standard Error of β̂1, computed
as

e.s.e(β̂1) =
s√
SSxx

where s is the estimate of σ defined previously.

If H0 is true, and β1 = 0, then

t =
β̂1

s/
√

SSxx
∼ Student(n − 2)

so we can carry out a significance test at level α in the usual way
(use a p-value, or construct the rejection region).
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Note: we might also consider a one-sided test, where Ha : β1 > 0,
say.

I If Ha : β1 6= 0, we use the two-sided rejection region, with
critical values

CR = ±tn−2(α/2)

I If Ha : β1 > 0, we use the one-sided rejection region, with
critical value

CR = +tn−2(α)

I If Ha : β1 < 0, we use the one-sided rejection region, with
critical value

CR = −tn−2(α)
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Note: To test

H0 : β1 = b

Ha : β1 6= b

for any b, the test statistic is

t =
β̂1 − b

s/
√

SSxx

(for example, b = 1 may be of interest. If H0 is true

t ∼ Student(n − 2)
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Confidence Interval
A 100(1− α)% confidence interval for β1 is

β̂1 ± tn−2(α/2)× s
β̂1

where

tn−2(α/2) : α/2 prob. point of Student(n − 2) distn.

s
β̂1

: Estimated standard error of β̂1

Note: we could perform a similar analysis for β0, but this is
generally of less interest.

The only quantity that needs attention is the estimated standard
error of β̂0. It can be shown that

e.s.e.(β̂0) = s
β̂0

=

√
1

n

(
1 +

nx2

SSxx

)
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2.1.5 The Coefficient of Correlation
To measure the strength of association between the two variables
x and y we can use the

Pearson Product Moment Coefficient Of Correlation

or correlation coefficient which measures the strength of the linear
relationship between x and y .

The coefficient, r , is defined by

r =
SSxy√

SSxxSSyy

where

SSxx =
n∑

i=1

(xi − x)2 SSyy =
n∑

i=1

(yi − y)2

SSxy =
n∑

i=1

(xi − x)(yi − y)
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Note: −1 ≤ r ≤ 1.

I If r is close to 1, there is a strong linear relationship between
x and y where y increases with x .

I If r is close to -1, there is a strong linear relationship between
x and y where y decreases with x .

Note: In the model
y = β0 + β1x

β1 = 0 =⇒ r ≈ 0, so tests for β1 = 0 can also be used to deduce a
lack of correlation between the variables.
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Notes

1. A strong linear relationship is not necessarily a causal
relationship, that is, just because r ≈ 1 does not mean that x
causes changes in y (we may have a spurious correlation).

2. Just because r ≈ 0 does not mean that that x and y are
unrelated, merely that they are uncorrelated. That is, it is
possible to construct examples where x and y have a strong
functional relationship, but where r = 0.
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Examples where r ≈ 0.
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Testing Correlation

We use ρ to denote the true correlation between X and Y .

We can test the hypothesis that ρ = 0 (that is, that X and Y are
uncorrelated using r . For testing

H0 : ρ = 0

Ha : ρ 6= 0

we can use the test statistic

t =
r√

(1− r2)/(n − 2)

If H0 is true, then approximately

t ∼ Student(n − 2)
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Alternately, we could use

z =
1

2
log

(
1 + r

1− r

)

and then, if H0 is true, as (approximately)

Z ∼ N

(
1

2
log

(
1 + ρ

1− ρ

)
,

1

n − 3

)

when ρ = 0, so that (approximately)

√
n − 3 Z ∼ N(0, 1)
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A related quantity is the

Coefficient of Determination

or R2 Statistic

r2 =
SSyy − SSE

SSyy
= 1− SSE

SSyy

Note that the total variation in y is recorded via

SSyy =
n∑

i=1

(yi − y)2

and the random variation is recorded via

SSE =
n∑

i=1

(yi − ŷi )
2
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Therefore the variation explained by the linear regression is

SSR = SSyy − SSE as SSyy = SSR + SSE

Thus

r2 =
SSR

SSyy
=

Variation explained by Regression

Total Variation

r2 is a measure of model adequacy, that is, if r2 ≈ 1, then the
linear model is a good fit.
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Example (Blood Viscosity vs PCV)

We have

I n = 32

I r = 0.879

I R2 = r2 = (0.879)2 = 0.772

Test of ρ = 0:

t =
r√

(1− r2)/(n − 2)
= 10.087

We compare with a Student(n− 2) ≡ Student(30) distribution; the
p-value is 3.73× 10−11, so there is strong evidence that ρ 6= 0.
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2.1.6 Prediction

After the linear model is fitted, it can be used for forecasting or
prediction. That is, given a new x value we can predict the
corresponding y .

As before, we see that at any value of xp, the prediction ŷp is

ŷp = β̂0 + β̂1xp

This is the best predictor of y at this x value.
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We can also compute the standard error of this prediction; if the
value of the random error variance σ2 is known, then

s.e.(ŷp) = σ

√
1

n
+

(xp − x)2

SSxx

If σ is unknown, we estimate σ by σ̂ = s as defined previously

s2 =
SSE (β̂0, β̂1)

n − 2

so that

e.s.e.(ŷp) = s

√
1

n
+

(xp − x)2

SSxx
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Note: This prediction is the expected value of y at x = xp. That
is, we have worked out

Var [Ŷp] = Var [β̂0 + β̂1xp]

to compute the s.e. for Ŷp.

But we can actually predict an error corrupted version of Ŷp, Ŷ ?
p

say, where
Ŷ ?

p = Ŷp + εp

where εp is a new random error.
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But

Var [Ŷ ?
p ] = Var [Ŷp + εp] = Var [Ŷp] + Var [εp] = Var [Ŷp] + σ2

that is, there is an extra piece of variation due to εp.

Thus

e.s.e.(ŷ?
p ) = s

√
1 +

1

n
+

(xp − x)2

SSxx
> e.s.e.(ŷp)
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Prediction Intervals

A 100(1− α)% prediction interval for the mean value at x = xp is

ŷp ± tn−2(α/2)s

√
1

n
+

(xp − x)2

SSxx

whereas for an individual new value (predicted with error) at
x = xp is

ŷp ± tn−2(α/2)s

√
1 +

1

n
+

(xp − x)2

SSxx
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Prediction Intervals
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ANOVA-F test in Regression

An ANOVA-F test can be constructed to test overall (global) fit of
the linear regression model.

The decomposition of sums of squares for regression takes the form

SS = SSR + SSE

where

I SS = SSyy : overall or total sum of squares

I SSR: sum of squares due to Regression

I SSE : sum of squares due to Error
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SS =
n∑

i=1

(yi − y)2

SSR =
n∑

i=1

(ŷi − y)2

SSE =
n∑

i=1

(yi − ŷi )
2

where
ŷi = β̂0 + β̂1xi i = 1, . . . , n

Degrees of Freedom

I TOTAL: n − 1

I REGRESSION: 1

I ERROR: n − 2

(error d.f. is n − p, here p = 2).
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The ANOVA Table

SOURCE DF SS MS F

REGRESSION 1 SSR MSR =
SSR

1
F =

MSR

MSE

ERROR n − 2 SSE MSE =
SSE

(n − 2)

TOTAL n − 1 SS

The test of the hypothesis

H0 : E [Y ] = β0

Ha : E [Y ] = β0 + β1x

can be completed by using the test statistic

F =
MSR

MSE

If H0 is true
F ∼ Fisher-F(1, n − 2)
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This is just like the ANOVA in the one-way layout (CRD) with n
groups, but where

µi = β0 + β1xi

That is, the group means are structured, that is, we have a
formula relating the µi quantities.

Consider four replicates at x values (x1, x2, x3, x4) in a regression;

1.0 1.5 2.0 2.5 3.0 3.5 4.0

−
5

0
5

10

x

y

x1 x2 x3 x4

Then for group i , µi = β0 + β1xi , i = 1, 2, 3, 4.
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Checking the Local Fit

A plot of the residuals
êi = yi − ŷi

can reveal model inadequacies. We should observe that in plots of

I x vs ê

I y vs ê

I ŷ vs ê

there is no discernible pattern
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Checking the Local Fit: Good Fit
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Checking the Local Fit: Poor Fit
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Checking the Local Fit: Poor Fit
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R2 and adjusted R2

SPSS reports both the R2 statistic

R2 = 1− SSE

SS

and the adjusted R2 statistic

R2 = 1− SSE/EDF

SS/TDF

where

I EDF = error degrees of freedom = n − 2

I TDF = total degrees of freedom = n − 1
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2.1.7 Polynomial Regression

In many practical situations, the simple straight line

y = β0 + β1x

is not appropriate. Instead, a model including powers of x

x2, x3, . . . , xk

should be considered. For example

y = β0 +
k∑

j=1

βjx
j = β0 + β1x + · · ·+ βkxk
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The Polynomial Regression Model

Y = β0 + β1x + · · ·+ βkxk + ε

where ε is a random error term as before can be used to model
data.

Two immediate problems:

1. How to choose k

2. How to carry out inference

I estimation
I testing
I prediction
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We begin by addressing 2. The estimation of parameters can be
again carried out using Least Squares provided that the model
assumptions listed before are valid. Consider k = 2.

We choose β
˜

= (β0, β1, β2)
T to minimize the sum of squared

errors

SSE (β
˜
) =

n∑

i=1

(yi − ŷi )
2 =

n∑

i=1

(yi − β0 − β1xi − β2x
2
i )2

that is the fitted values for parameters β
˜

are

ŷi = β0 + β1xi + β2x
2
i

β̂
˜

can be found to minimize SSE using calculus techniques

(differentiating with respect to the elements of β
˜
) to give the

minimum SSE

SSE (β
˜
) =

n∑

i=1

(yi − β̂0 − β̂1xi − β̂2x
2
i )2
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We can also compute the estimated standard errors

s
β̂0

, s
β̂1

, s
β̂2

which allow tests of parameters to be carried out, and confidence
intervals calculated.

We can also compute prediction intervals.

The best estimate of the residual error variance σ2 is

σ̂2 =
SSE (β̂

˜
)

n − 3

p is the number of parameters estimated equal to three, so we
divide by n − 3.
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We can also compute

I Residuals

I can be used to assess the fit of the model.
I the residuals should be patternless if the model fit is good.

I R2, Adjusted R2 statistics

I used to assess the global fit of the model.
I used to compare the quality of fit with other models.
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Example (Hooker Pressure Data)

For the Hooker pressure data, a quadratic polynomial (k = 2)
might be suitable.

Y = β0 + β1x + β2x
2

We need to estimate β0, β1 and β2 for these data to see if the
model fits better than the straight line model we fitted previously.
This can be achieved using SPSS.

It transpires that the quadratic model produces a set of residuals
that are patternless, which the straight line model when fitted does
not.

See Handout for full details.
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Note: It is common to use the Standardized Residuals

ẑi =
êi

σ̂
=

yi − ŷi

σ̂

where σ̂2 is the estimate of σ2 defined previously, as

Var[ẑi ] ≈ 1

if the model fit is good, whereas

Var[êi ] ≈ σ2

which clearly depends on σ. This makes it hard to compare êi

across different models when inspecting residuals.
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Note: Although the model based on

y = β0 + β1x + β2x
2

is not linear in x , it is linear in the parameters. Because of this, we
still term this a linear model. It is this fact that makes the
least-squares solutions easy to find.

This model is no more difficult to fit than the model

y = β0 + β1
x

1 + x
+ β2(1− e−x)

say - it is still a linear in the parameters model. It is in the general
class of models

y = β0 + β1g1(x) + β2g2(x)

where g1(x) and g2(x) are general functions of x .
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In fact, any model of the form

y =
k∑

j=0

βjgj(x) + ε (1)

can be fitted routinely using least-squares; if we know x , then we
can compute

g0(x), g1(x), . . . , gk(x)

and plug those values into the formula (1).
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Example (Harmonic Regression)

Let

g0(x) = 1

g1(x) =

{
cos(λjx) j odd
sin(λjx) j even

where k is an even number, k = 2p say.

λj , j = 1, 2, . . . , p are constants

λ1 < λ2 < · · · < λp

For fixed x , cos(λjx) and sin(λjx) are also fixed, known values.
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Gene Expression Data Example
Harmonic Regression Fit with p = 2.
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Gene Expression Data Example
Harmonic Regression Fit with p = 2.
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Why are things so straightforward ?

- because the system of equations based on the derivatives

∂

∂βj

{
SSE (β

˜
)
}

= 0 j = 0, 1, . . . , k

can always be solved routinely, so we can always find β̂
˜
.

In the general model (1), simple formulae for

I β̂
˜

I s.e.(β̂
˜
)

I σ̂2

can be found using a matrix formulation.

See handout on website - NOT EXAMINABLE !
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Note: One-way ANOVA can be formulated in the form of model
(1). Recall

I k independent groups

I means µ1, . . . , µk

I yij - jth observation in the ith group

Let

β0 = µk

βt = µt − µk t = 1, 2, . . . , k − 1.

Define new data xij(t) where

xij(t) =

{
1 if t = i
0 if t 6= i
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Then, using the linear regression formulation

yij = β0 +
k−1∑

t=1

βtxij(t) + εij .

For any i , j , xij(t) is non-zero for only one value of t, when t = i .

We term this a regression on a factor predictor ; it is clear that
β0, β1, . . . , βk−1 can be estimated using least-squares.

This clarifies the link between

ANOVA and Linear Modelling

- they are essentially the SAME MODEL formulation.

This link extends to ALL ANOVA models; recall that we used the
General Linear Model option in SPSS to fit two-way ANOVA.
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2.2 Multiple Linear Regression

Multiple linear regression models model the variation in response y
as a function of more than one independent variable.

Suppose we have variables

X1, X2, . . . , Xk

recording different features of the experimental units. We wish to
model response Y as a function of X1, X2, . . . ,Xk .
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2.2.1 Multiple Linear Regression Models

Consider the model for datum i

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi

where xij is the measured value of covariate j on experimental unit
i . That is

yi = β0 +
k∑

j=1

βjxij + εi

where the first two terms on the right hand side are the systematic
or deterministic components, and the final term εi is the random
component.
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Example (k = 2)

yi = β0 + β1xi1 + β2xi2 + εi

A three parameter model.

Note: We can also include interaction terms

yi = β0 + β1xi1 + β2xi2 + β12(xi1 . xi2) + εi

where

I The first two terms in xi1 and xi2 are main effects

I The third term in (xi1 . xi2) is an interaction

This is a four parameter model.
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Multiple Linear Regression Examples

SEE HANDOUT

I Multiple regression: Viscosity Example

I Factor Regression:

I Interaction

I Residuals

I SPSS Instructions
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Subgroup analysis, with a factor predictor and a continuous
covariate, is a form of interaction modelling; the factor predictor
interacts with the covariate to modify the slope across the
subgroups, for example.

We can describe the models using the notation previously
introduced for ANOVA; consider the single binary factor predictor
and single covariate case;

MODEL 0 Single horizontal straight line 1
MODEL 1 Two parallel horizontal X2

straight lines
MODEL 2 Single straight line, X1

non-zero slope
MODEL 3 Two parallel straight lines, X1 + X2

non-zero slope
MODEL 4 Two non-parallel straight lines X1 + X2 + X1.X2
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Note: Always be on the lookout for lurking subgroups (subgroups
determined by the levels of an unnoticed factor predictor)

Inferences can change radically when the lurking factor is included
in the model

I positive association can be converted into negative association
with the continuous covariate.
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For example, for factor predictor X2 taking two levels and
continuous covariate X1. When the pooled data are examined, a
positive association between Y and X1 is revealed.
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When the pooled data are separated into subgroups, a negative
association between Y and X1 in each subgroup is revealed.
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i.e. increasing X1 decreases response in subgroup 1, and decreases
response in subgroup 2, but appears to increase response overall.

This is known as Simpson’s Paradox in Regression. It illustrates
that pooling data over subgroups must be carried out with care !

I you must fit the factor predictor in the model if you suspect
subgroup differences exist.

In the example, the problem arises due to dependence between X1

and X2; all the group with X2 = 0 have low values of X1, whereas
all the group with X2 = 1 have high values of X1

Dependence between covariates and factor predictors makes model
fitting and results interpretation complicated.
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Recap: we can build general models

yi = β0 +
k∑

j=1

xij + εi

to explain the variation of y in terms of covariates and factor
predictors x1, . . . , xk .

I Simple Linear Regression

I Polynomial Regression

I Multiple Regression

I Factor Predictor Regression

I Interaction Models
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We can fit each of these models easily using least-squares to obtain

I estimates β̂
˜

= (β̂1, β̂2, . . . , β̂k)T

I standard errors

I goodness of fit measures R2 and Adjusted R2

I residuals for model checking

I predictions
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Interpreting β̂j

β̂j can be interpreted as the amount of increase in response y
when xj increases by one unit when the other predictors

x1, x2, . . . , xj−1, xj+1, . . . , xk

are held fixed.

We can test the hypothesis

H0 : βj = 0

H0 : βj 6= 0

using the usual hypothesis testing approach.
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Test statistic:

tj =
β̂j

s
β̂j

=
ESTIMATE

STANDARD ERROR

If H0 is true,
tj ∼ Student(n − k − 1)

as we are estimating k + 1 parameters overall.

Note: In multiple regression, when testing each of

β̂0, β̂1, . . . , β̂k

we should strictly use a multiple testing correction (as in
post-hoc tests in ANOVA)
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