
Summary

If the assumptions

I independence (holds by design in a CRD)

I Normal populations

I equal variances

hold, use

ANOVA F-test

If the assumptions do not hold

I use Randomization/Permutation test

I use Non-parametric test (see Section 3)

81



1.3 Multiple Comparison of Means

If the ANOVA F-test null hypothesis

H0 : µ1 = · · · = µk

is rejected, then it is of interest to discover which of the means
are different. For k groups, there are c = k(k − 1)/2 pairs of
group means that can be compared.

Consider a “family” of hypothesis tests - a collection of tests of
different hypotheses carried out independently on different data
sets. For each test in the family, we consider testing the hypothesis
at significance level α.
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Notation

Label the tests i = 1, . . . , c , and for each i , label

I the null hypotheses H0i

I the test statistics Ti

I the rejection regions Ri

that are potentially different for each i .

We specify for each i ,

α = P[Ti ∈ Ri |H0i is TRUE]

which implicitly defines Ri . Note that α is the

“Test Type-I Error Rate” or “Comparisonwise Error Rate”

Now consider the results of all tests in the family; what is the
“Familywise” Type-I error rate ?
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Using the laws of probability

P[Ti ∈ Ri |H0i is TRUE] = α

means that
P[Ti /∈ Ri |H0i is TRUE] = 1− α

giving the probability that the test does not reject H0i , if H0i is in
fact true, is 1− α.

Now we consider all tests together;

P[Each Ti /∈ Ri |Each H0i is TRUE] = (1− α)c

This is the probability that each test results in the null hypothesis
not being rejected, that is, the probability that we never commit a
Type-I error.
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Therefore the probability of at least one Type-I error is

αF = 1− (1− α)c

αF is the Familywise Error Rate.

α = 0.05 α = 0.01
c αF αF

5 0.226 0.049
10 0.401 0.096
50 0.923 0.395
100 0.994 0.634

Therefore, whenever we carry out a “family” of tests, we should
not use the traditional choices of α = 0.05 or 0.01 on each test.
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The Bonferroni Method

To fix αF = 0.05, say, we need to use α on each test where

αF = 1− (1− α)c ⇐⇒ α = 1− (1− αF )1/c

For example, if αF = 0.05 and c = 10, use

α = 1− (1− 0.05)1/10 = 0.0051

It can be shown that

1− (1− α)c ≈ cα

Therefore, if αF is the required familywise error rate, we must
set the comparisonwise error rate to be α = αF/c .

αF/c is known as the Bonferroni Correction.
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Confidence Intervals

For the k = 2 group comparison of means, a 100(1− α)%
confidence interval for µ1 − µ2 is

(x1 − x2)± tα/2(n1 + n2 − 2)sP

√
1

n1
+

1

n2

where tα(ν1) is the 1− α probability point of the Student-t
distribution with ν1 degrees of freedom (under the assumptions of
independence, Normality and equal group variances).

If we move to a family of c tests, to get simultaneous confidence
intervals for the differences in means µi − µj for all pairs of i and j ,
we should adjust α to αF when computing the 100(1− α)%
confidence interval.
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SPSS gives twelve different methods for correcting the confidence
interval for use in different experimental situations. For example

I planned comparisons µ1 = µ3, µ7 = µ10 etc.

I all comparisons

Three methods are recommended:

I Tukey’s Method

I Bonferroni’s Method

I Scheffé’s Method

Having selected a multiple comparison correction method, we
compute simultaneous confidence intervals for each comparison of
means, and identify

I which means are significantly different

I the ranking of differences µi − µj in terms of magnitude.
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1.4 Randomized Block Designs

A randomized block design used matched experimental units
organized into sets known as blocks and assigns one member from
the set to each treatment.

For k treatments

1. Compile b blocks of k experimental units, with each block
comprising units that are similar.

2. Assign one unit from each block to each treatment at random.

Then there are a total of n = bk measured responses.
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We wish to compare treatments whilst acknowledging that there
may be differences between the blocks.

That is, the observed variation is due to

TREATMENTS and BLOCKS and ERROR

rather than merely

TREATMENTS and ERROR

as in the CRD.
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Example (SAT Scores)

I Response : Measured SAT Score

I Factor : Sex

I Factor-levels : k = 2 (Female/Male)

I Blocks : b = 5 (Previous GPA, within same school)

i.e. k = 2, b = 5 ∴ n = 10.

Block Female SAT Male SAT
1 A: 2.75 540 530
2 B: 3.00 570 550
3 C: 3.25 590 580
4 D: 3.50 640 620
5 E: 3.75 690 690
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Example (SAT Scores (continued))

This design recognizes that GPA score and school are likely to
explain some variation in SAT Score, but that neither is directly
related to the “treatment” of interest (SEX - Female/Male).

i.e. the blocking variable removes systematic variation in response
that is not of primary interest.

We pick one Female and one Male in each school/GPA category,
and pair them.
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Example (Treatment for Hypertension)

I Response : Blood Pressure (mgHg)

I Factor : Drug Type

I Factor-levels : k = 3 (Drug 1, Drug 2, Drug 3)

I Blocks : b = 4 Age/Sex combinations

I Female/Under 50
I Male/Under 50
I Female/Over 50
I Male/Over 50

i.e. k = 3, b = 4 ∴ n = 12.
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Testing for Equal Treatment Means

An ANOVA F-test can be constructed for a RBD. Let

I i = 1, . . . , k index treatments

I j = 1, . . . , b index blocks

i.e. xij is the response for the ith treatment in the jth block. Let

I x i be the ith treatment mean

I x (B)

j be the jth block mean

I x be the overall mean
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Let

SST =
k∑

i=1

b(x i − x)2

SSB =
b∑

j=1

k(x (B)

j − x)2

SS =
k∑

i=1

b∑

j=1

(xij − x)2

SST: Sum of Squares for Treatments
SSB: Sum of Squares for Blocks
SS: Total Sum of Squares
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Finally

SS = SST + SSB + SSE ∴ SSE = SS − SST − SSB

SSE: Sum of Squares for Errors

Test statistic is

F =
MST

MSE

where

MST =
SST

k − 1
MSE =

SSE

n − b − k + 1
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ANOVA F-test to compare treatment means in a
randomized block design

Theorem (ANOVA F-test for a RBD)

To test

H0 : µ1 = · · · = µk

Ha : At least one pair of treatment means different.

use the test statistic

F =
MST

MSE

If H0 is TRUE

F ∼ Fisher-F(k − 1, n − b − k + 1)

- this defines the rejection region for significance level α, and the
p-value, in the usual way.
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Assumptions:

1. Experimental units (between blocks) are independent, and
treatments are allocated at random (within blocks).

2. Normality

3. bk block/treatment combinations correspond to populations
with equal variances.

ANOVA Table

SOURCE DF SS MS F

TMTS k − 1 SST MST F = MST/MSE
BLOCKS b − 1 SSB MSB
ERROR n − k − b + 1 SSE MSE

TOTAL n − 1 SS

98



After the ANOVA test is complete, and the hypothesis

H0 : µ1 = · · · = µk

is rejected, we can proceed with the “post-hoc” tests of
hypotheses µi = µj for i 6= j .

Notes:

1. In a RBD, it is not (in general) possible to estimate individual
treatment means, that is, x i does not estimate µi as it is an
average across blocks, which are believed to be different in
terms of response.
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2. Testing the Block Means However, we can test whether the

block means µ
(B)
1 , . . . , µ

(B)
b are significantly different. For

H0 : µ
(B)
1 = · · · = µ

(B)
b

we use the F statistic

F =
MSB

MSE

where

MSB =
SSB

b − 1

If H0 is TRUE

F ∼ Fisher-F(b − 1, n − k − b + 1)

That is, we treat the blocks as levels of another factor, and test to
see whether this factor affects response.
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Example (Soil Analysis (see handout))

Results of two ANOVA F-tests:

Test of F p Conclusion

SOLVENT 0.673 0.585 No Difference
SOIL 10.568 0.001 Difference

Here SOLVENT is the treatment variable, SOIL is the blocking
variable.

3. Remember to check the assumptions (independence,
normality, equal variances in each treatment/block
combination)

Equal variances may be hard to check as we only have one
observation per treatment/block comparison.
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Comment: The “sum of squares” decompositions

CRD : SS = [SST ] + SSE

RBD : SS = [SST + SSB] + SSE

are both of the form

TOTAL = SYSTEMATIC + RANDOM
VARIATION VARIATION VARIATION

“SYSTEMATIC”

{
For the CRD: SST
For the RBD: SST + SSB

“RANDOM” For both: SSE
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We have studied the

Randomized Complete Block Design

where each block/treatment combination has one experimental
unit.

An incomplete design could also be considered, where some
block/treatment combinations are omitted. However, this design
does not lead to straightforward ANOVA analysis.
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1.5 Factorial Experiments

Designs studied so far:

I CRD - one factor

I RBD - one factor, plus one blocking variable, so two factors in
total, where one (the blocking variable) is a known source of
systematic variation.

However, in the RBD, we must assume that the treatments behave
in a similar way across blocks.
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Let i index treatments (1 ≤ i ≤ k) and consider block j , and two
treatment (factor levels) i1 and i2.

In an RBD, we assume that

E [Xi1j − Xi2j ] = µi1 − µi2

which does NOT depend on j .

That is, the expected difference in response due to the two
treatments does not depend on the block.

But perhaps the difference does depend on block; perhaps we have
INTERACTION.

In the current RBD, we do not have enough data to look for this.
We now seek to extend the RBD to allow for tests for interaction;
we do this by using replication.
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RBD with Balanced Replication

Suppose we have r observations per block/treatment combination
(termed replicates), so that we have n = bkr experimental units in
total.

Balanced designs have equal numbers of replicates in each
block/treatment combination.

In this design, all the quantities

SST , SSB, SSE , SS

MST , MSB,MSE

can be defined, and an ANOVA F-test can be carried out - the only
difference is that n = bkr .
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I Sum of Squares for Treatments (SST)

SST =
k∑

i=1

br(x i − x)2

I Sum of Squares for Blocks (SSB)

SSB =
b∑

j=1

kr(x (B)

j − x)2

I Overall Sum of Squares (SS)

SS =
k∑

i=1

b∑

j=1

r∑

t=1

(xijt − x)2

and SSE = SS − SST − SSB

Third index t indexes the replicates.
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The RBD with replication does allow the investigation of
interaction. The new test is based on the decomposition

SS = SST + SSB + SSI + SSE

where SSI is the sum of squares for Interaction.

We have SST , SSB and SS as before, and

SSI =
k∑

i=1

b∑

j=1

r(x ij − x i − x (B)

j + x)2

where

x ij =
1

r

r∑

t=1

xijt i = 1, . . . , k, j = 1, . . . , b

is the sample mean for replicates in (i , j)th treatment/block
combination.
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Testing in the RBD with Replication
The three F statistics

F =
MST

MSE
F =

MSB

MSE
F =

MSI

MSE

can be used to test for significant Treatment, Block and
Interaction effects respectively.

Now

MSE =
SSE

Error d.f.

But what is “Error d.f.” ? It is a constant that dictates how large
SSE should be on average.

The general rule for computing the error d.f. for any model is

Error d.f. = n − p

where n is the total sample size and p is the total number of
parameters fitted.
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How many parameters do we fit ?

I No Interaction

p = 1 + (b − 1) + (k − 1)

that is, the overall mean µ, plus the b − 1 differences from µ
due to the blocks, plus the k − 1 differences from µ due to
the treatments.

I Interaction
p = bk

that is, one parameter in each cell of the two-way table of
blocks by treatments.
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Thus

I No Interaction

p = 1 + (b − 1) + (k − 1) = b + k − 1

parameters, so

Error d.f. = n − p = n − b − k + 1

I Interaction: we fit p = bk parameters, so

Error d.f. = n − p = n − bk
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It transpires that if

MSI =
SSI

(b − 1)(k − 1)

is the Mean Square for Interaction, then

F =
MSI

MSE

yields a test statistic suitable for testing interaction. If there is no
interaction, then

F ∼ Fisher-F((b − 1)(k − 1), n − bk)

where n = bkr .

Why (b − 1)(k − 1) ? This is the number of extra parameters we
fit to include the interaction.
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For the CRD:

Ha H0

FULL MODEL −→ NULL MODEL

k parameters −→ 1 parameter

so there are (k − 1) extra parameters, and SST varies on (k − 1)
degrees of freedom.
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For the RBD: the (i , j)th treatment/block combination has mean

µi + µB
j

so for testing for a TREATMENT effect

Ha H0

FULL MODEL −→ NULL MODEL

k parameters −→ 1 parameter

so there are (k − 1) extra parameters, and SST varies on (k − 1)
degrees of freedom.

µ1, . . . , µk −→ µ
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For testing for a BLOCK effect

Ha H0

FULL MODEL −→ NULL MODEL

b parameters −→ 1 parameter

so there are (b − 1) extra parameters, and SSB varies on (b − 1)
degrees of freedom.

µ
(B)
1 , . . . , µ

(B)
k −→ µ(B)

These models and tests can be fitted and carried out even if we do
not have replication.
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With replication, we can investigate the interaction, that is the
model where the (i , j)th treatment/block combination has mean

µi + µB
j + µij

rather than the model where

µi + µB
j

that is, we wish to test

H0 : µij = 0 for all i and j

Ha : µij 6= 0

116



In the full interaction model: we fit bk parameters

In the restricted, no interaction model: we fit

1 + (b − 1) + (k − 1) = b + k − 1

parameters. Therefore the differences is

bk − (b + k − 1) = bk − b − k + 1 = (b − 1)(k − 1)

and SSI varies on (b − 1)(k − 1) degrees of freedom.
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ANOVA Table

SOURCE DF SS MS F

TMTS k − 1 SST MST FT

BLOCKS b − 1 SSB MSB FB

INTERACTION (b − 1)(k − 1) SSI MSI FI

ERROR (n − bk) SSE MSE

TOTAL n − 1 SS

where

MST =
SST

k − 1
MSB =

SSB

b − 1

MSI =
SSI

(b − 1)(k − 1)
MSE =

SSE

n − bk

and

FT =
MST

MSE
FB =

MSB

MSE
FI =

MSI

MSE
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Example: Batteries Data (see handout)

Dependent Variable: Battery Life
Source Sum of Squares df Mean Square F Sig.
Corrected Model 59,154.000 8 7,394.250 11.103 0.000
Intercept 398,792.250 1 398,792.250 598.829 0.000
material 10,633.167 2 5,316.583 7.983 0.002
temp 39,083.167 2 19,541.583 29.344 0.000
material * temp 9,437.667 4 2,359.417 3.543 0.019
Error 17,980.750 27 665.954
Total 475,927.000 36
Corrected Total 77,134.750 35
R Squared = .767 (Adjusted R Squared = .698)

For α = 0.05, there is a significant temp effect (p < 0.001), and a
significant material effect (p = 0.002), and a significant
interaction (p = 0.019)
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NB: If we do not have replication, we CANNOT fit the interaction.
Recall that

Error d.f. = n − bk

but if r = 1, n = rbk = bk, so the error d.f. is zero.

In fact, SSE = 0 also, so the MSE is not defined.
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We now study multifactor designs, to assess the effects and
interactions of several factors simultaneously.

We consider all possible combinations of

FACTOR A with a levels

FACTOR B with b levels

FACTOR C with c levels
...

to define the treatments in a factorial design.

121



Factorial Experiments

A complete factorial experiment is one in which every combination
of a number of factors is utilized.

i.e. the number of treatments is equal to the total number of
factor-level combinations.

We focus on two factor experiments

FACTOR A with a levels

FACTOR B with b levels

so there are ab treatments in total.
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A two-way layout with a = 3 and b = 5.

Factor B
1 2 3 4 5

1
2

F
ac

to
r

A

3

This design is very similar to the RBD, but now the second factor
is not a blocking factor;

I that is, the ab treatment populations are constructed
independently from the same base population, or from
populations not necessarily believed to be systematically
different.

I individuals from the same base population are assigned at
random to one of the ab treatments.
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In this design we can study the effect of Factor A and Factor B
(main effects) as well as the interaction provided we have
(balanced) replication.

We construct ANOVA F-tests based on the decomposition

SS = SSTA + SSTB + SSIAB + SSE

I Sum of Squares for Treatments due to factor A (SSTA)

SSTA =
a∑

i=1

br(x i . − x ..)
2

I Sum of Squares for Treatments due to factor B (SSTB)

SSTB =
b∑

j=1

ar(x .j − x ..)
2

I Sum of Squares for Interaction (SSIAB)

SSIAB =
a∑

i=1

b∑

j=1

r(x ij − x i . − x .j + x ..)
2
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New notation:

I sample mean for Factor A level i

x i . =
1

br

b∑

j=1

r∑

t=1

xijt i = 1, . . . , a

I sample mean for Factor B level j

x .j =
1

ar

a∑

i=1

r∑

t=1

xijt j = 1, . . . , b

I sample mean for replicates in (i , j)th factor combination

x ij =
1

r

r∑

t=1

xijt i = 1, . . . , a, j = 1, . . . , b

I overall sample mean

x .. =
1

n

a∑

i=1

b∑

j=1

r∑

t=1

xijt
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These allow computation of

SSTA, SSTB ,SSIAB , SS , SSE

MSTA, MSTB , MSIAB , MSE

using the degrees of freedom identical to those in the RBD with
replication.

Tests for

I significant effect for Factor A

I significant effect for Factor B

I significant interaction

will be carried out as before using an ANOVA table.
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ANOVA Table

SOURCE DF SS MS F

FACTOR A a− 1 SSTA MSTA FA

FACTOR B b − 1 SSTB MSTB FB

INTERACTION (a− 1)(b − 1) SSIAB MSIAB FAB

ERROR (n − ab) SSE MSE

TOTAL n − 1 SS

If Factor A is not influential (H0 specifying no difference between
responses at different levels of factor A), then

FA ∼ Fisher-F(a− 1, n − ab)

Similarly,

No effect of Factor B : FB ∼ Fisher-F(b − 1, n − ab)

No Interaction : FAB ∼ Fisher-F((a− 1)(b − 1), n − ab)

SEE EXAMPLES HANDOUT
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Note: For two factors A and B, the main effects plus interaction
model can be written

A + B + A.B

whereas the main effects only can be written

A + B

The models
A + A.B B + A.B

do not make sense.
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For a two factor design, the only models that should be considered
and or reported are

MODEL FACTOR INTERACTION
NULL NONE NONE

A A NONE
B B NONE

A+B A,B NONE
A+B+A.B A,B YES

that is, if the interaction is significant, the only model you should
report is

A + B + A.B
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Note: ANOVA analysis for the RBD and FD (both with
replication) are identical. The only difference lies in the
interpretation of the factors

I RBD: one blocking, one treatment factor

I FD: two treatment factors

“Blocking” factors are known or strongly believed to have a
significant effect on the response.
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Estimating Effect Size

In multifactor designs, parameter estimation can be carried out in
different parameterizations

For the CRD (one-way layout):

I Natural parameters: µ1, . . . , µk

I Contrast parameters: β, β0, . . . , βk−1 where

β = µk βi = µi − µk , i = 1, . . . , k − 1

that is, differences from baseline.

For the two-factor designs (RBD/FD): In the two-way layout,
with cells (i , j), i = 1, . . . , a, j = 1, . . . , b. The cell means are mij ,
where

mij = µi . + µ.j + µij

where µi . gives the Factor A contribution, µ.j gives the Factor B
contribution, and µij gives the interaction.
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The parameterization used by SPSS is the contrast
parameterization is

mij = β0 i = a, j = b

= β0 + β
(A)
i i = 1, . . . , a− 1, j = b

= β0 + β
(B)
j i = a, j = 1, . . . , b − 1

= β0 + β
(A)
i + β

(B)
j + γ

(AB)
ij

i = 1, . . . , a− 1
j = 1, . . . , b − 1

where

β
(A)
i : contrasts for factor A

β
(B)
j : contrasts for factor B

γ
(AB)
ij : interaction
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SPSS takes the ath level of factor A and the bth level of factor B
as the baseline, and looks at differences compared to this baseline.

The ab parameters are

β0 1

β
(A)
1 , . . . , β

(A)
a−1 (a− 1)

β
(B)
1 , . . . , β

(B)
b−1 (b − 1)

γ
(AB)
ij , i = 1, . . . , a− 1, j = 1, . . . , b − 1 (a− 1)(b − 1)

Total ab
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For example: a = 3, b = 4.

Factor B
1 2 3 4

1 1© 2© 3© β0 + β
(A)
1

2 4© 5© 6© β0 + β
(A)
2

F
ac

to
r

A

3 β0 + β
(B)
1 β0 + β

(B)
2 β0 + β

(B)
3 β0

where

1© = β0 + β
(A)
1 + β

(B)
1 + γ

(AB)
11

6© = β0 + β
(A)
2 + β

(B)
3 + γ

(AB)
23

and so on.
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Estimation is still straightforward:

PARAMETER ESTIMATE

β0 xab

β
(A)
i x i . − xab

β
(B)
j x .j − xab

γ
(AB)
ij x ij − x i . − x .j + xab

for i = 1, . . . , a, j = 1, . . . , b.

Other parameterizations can be used.
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Final Note on ANOVA

We have studied the simplest design scenarios: extension to

I incomplete

I unbalanced

I nested

I random effect

designs are possible.

Furthermore SPSS has greater functionality: for example, it has
the capability to carry out ANOVA-like analyses even for the case
of non-equal variances (when Levene’s test rejects the hypothesis
of equal variances).
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