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Textbook: McClave and Sincich (2006), Statistics (10th Edition),
Chapters 10-14.

Prerequisites: MATH 203 (or equivalent)

Some statistical computing knowledge useful.

Method of Assessment:

I Assignments

I Mid-Term

I Final

Precise breakdown to be confirmed.
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Course Objectives

I Extensions of MATH 203 topics to other practical
experimental contexts

I Introduction to statistical computation using standard
software (SPSS)

I Practice in the use of statistical methods, in particular,
hypothesis testing and linear modelling.
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Three main sections

I. THE ANALYSIS OF VARIANCE AND DESIGNED
EXPERIMENTS

II. LINEAR REGRESSION MODELLING

III. NON-PARAMETRIC TESTING
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Typical experimental scenario

I two different groups of subjects

I single observation/measurement made on each subject

I scientific question of interest

ARE THE TWO GROUPS OF SUBJECTS SIGNIFICANTLY
DIFFERENT IN TERMS OF THEIR MEASURED VALUES ?
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Example: Pre-Natal Care

Objective: To compare the birthweights of babies in two groups of
mothers.

I GROUP A: Received five or fewer pre-natal visits

I GROUP B: Received more than five pre-natal visits

Do the GROUP A babies have significantly different birthweights
from those from GROUP B ?
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Data: Birthweights (grammes)

I GROUP A: 10 subjects

2164 2600 2184 2080 1820

2496 2184 2080 2184 2576

I GROUP B: 7 subjects

3224 2704 2912 2444 3120

2912 3848
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First step in analysis: statistical summary

I GROUP A:
I Sample size: nA = 10
I Sample mean: xA = 2236.8
I Sample variance: s2

A = 61190.4

I GROUP B: 7 subjects

I Sample size: nB = 7
I Sample mean: xB = 3023.429
I Sample variance: s2

B = 198679.6
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Recall, for data x1, . . . , xn

x =
x1 + · · ·+ xn

n
=

1

n

n∑

i=1

xi

s2 =
1

n − 1

n∑

i=1

(xi − x)2

x measures the “average” of sample
s2 measures the amount of variability around the average.
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In the birthweight example

xA = 2236.8 xB = 3023.429

so it appears that Group B birthweights are higher....

... BUT ARE THEY SIGNIFICANTLY HIGHER ?

i.e. is the difference due to chance alone

I sample sizes quite small

I birthweights quite variable
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Statistical Testing

We adopt the following procedure to assess the “significance” of
the difference between xA and xB .

1. Define a test statistic, T , that permits comparison of the two
groups

2. Predict how T will behave assuming that the two groups are
not significantly different.

3. Compare the prediction with what was actually observed.
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Formally, we

I assume a Normal distribution for the data in the two groups

i.e. xA1, . . . , xAnA
are drawn from a population of birthweights

that is well-modelled by a

Normal(µA, σ2
A)

distribution.

Similarly

xB1, . . . , xBnB
∼ Normal(µB , σ2

B)

We might initially assume that

σ2
A = σ2

B
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I consider the two hypotheses

H0 : µA = µB

Ha : µA 6= µB

H0 is the NULL HYPOTHESIS
Ha is the ALTERNATIVE HYPOTHESIS

I define the test statistic

t =
xA − xB

s

√
1

nA
+

1

nB

where

s2 =
(nA − 1)s2

A + (nB − 1)s2
B

nA + nB − 2
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s2 is the estimate of the common population variance

σ2 = σ2
A = σ2

B

Here

s2 =
(10− 1)61190.4 + (7− 1)198679.6

10 + 7− 2
= 116186.1

so that
s = 340.8608.

Thus

t =
2236.8− 3023.429

340.8608

√
1

10
+

1

7

= −4.683
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Now, if the null hypothesis was true, so that

µA = µB

the test statistic t should look like an observation from a

Student-t

distribution with
nA + nB − 2 = 15

“degrees of freedom”.
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i.e. t should lie somewhere in the “high-probability region” of the
Student-t(15) probability distribution
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Clearly, in this case, t does not lie in a high probability region.
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i.e. we are surprised to see t so far away from zero.

The predicted behaviour of t, under the assumption that H0 is
TRUE, DOES NOT MATCH THE OBSERVED BEHAVIOUR !

Therefore, the assumption that H0 is true MUST BE INCORRECT
and we

REJECT H0
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How do we quantify the “statistical significance” ?

Two approaches:

1. Define the “high-probability” region, and reject H0 if t does
not lie in this region.

2. Compute the level of “surprise” at observing t under the
assumption that H0 is TRUE.
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For 1: Set significance level α, with 0 < α < 1, and find the
central 1− α “high-probability” region, between the two values
−CR and CR (marked by dotted lines).
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If t < −CR or t > CR , REJECT H0.
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Typically, α = 0.05 (or 0.01), so for the Student-t(15) distribution

CR = 2.131 (or 2.947)

The regions (−∞,−CR) and (CR ,∞) form the CRITICAL
REGION or REJECTION REGION.

If t lies in the critical region, we reject H0.
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For 2: To compute the level of “surprise”, we evaluate the
probability of observing a “more extreme” test statistic under the
assumption that H0 is TRUE.

Here, this probability is

p = 0.00029.

This probability is very small, so we are very surprised by the
observed result.

p is termed the p-value or observed significance level.

If p < α = 0.05 (or 0.01), we reject H0.
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Some questions:

I How do we choose the test statistic ?

I How do we choose α ?

I Why is the distribution of T (and t) a Student-t(15)
distribution ?

I How do we compute CR and p ?
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Equal Variances ?

Is the assumption of equal population variances

σA = σB

fair in this case ?

s2
A = 61190.4

s2
B = 198679.6

so that
s2
A

s2
B

= 0.3080.

Can we test σA = σB formally ?
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Yes:

H0 : σA = σB

Ha : σA 6= σB

Test statistic is

F =
s2
A

s2
B

= 0.3080

If H0 is true, F should look like an observation from a

Fisher-F

distribution with
(nA − 1, nB − 1)

“degrees of freedom”.
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From tables, for α = 0.05,

CR1 = 0.231 CR2 = 5.523

so the observed value of F does lie in the high probability region,
and there is no reason to reject H0 at α = 0.05.
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Can also compute a 95 % confidence interval for µA − µB

(xA − xB)± tnA+nB−2(0.975)s

√
1

nA
+

1

nB

where

tnA+nB−2(0.975) = 2.131

that is, the 0.975 probability point of the Student − t(15)
distribution.

Hence the 95 % confidence interval is

(−1144.59,−428.67)

- does not contain zero !
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NOTE: Significance level α.

α = P[H0 is rejected, given that H0 is TRUE]

= P[H0 rejected|H0 is TRUE]

If

I T is the test statistic random variable

I R is the rejection region

then

α = P[T lies in R|H0 TRUE] = P[T ∈ R|H0 TRUE]

that is, α is the probability of committing a

TYPE I ERROR
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Part I

Analysis of Variance
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In this section

I introduction to the terminology of designed experiments

I extension of statistical testing theory to comparison of more
than two population means

I THE ANALYSIS OF VARIANCE (ANOVA) F-TEST
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1.1 DESIGNED EXPERIMENTS
Data collection studies typically fall into one of two categories:

(i) Observational studies: the experimenter has no control over
the variables under study, and can only measure outcomes.

I The IQ of MAC and PC users
I The relationship between environmental exposure to toxins and

health status.

i.e. The experimenter does not control the exposure to
variables that may cause changes in the outcome of interest.

This type of study is common in medicine and epidemiology
as it is relatively cheap to carry out.

Common type of observational study:

CASE-CONTROL STUDY
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Example (Smoking and Lung Cancer)

A study (Doll and Hill, 1950) investigated 649 lung cancer cases
and 649 matched healthy controls, both drawn from a population
of men in the UK. They found out what proportion in each group
were smokers.

Neither health status nor smoking status were controlled by the
experimenter, but were merely observed.

Smokers Non-smokers Total

Lung cancer 647 2 649
Controls 622 27 649
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This type of study can be unreliable, and cannot uncover all the
relationships of interest.

A preferred approach involves the experimenter controlling the
variables that cause variation in the other variables.

Note that this may not be ethical in a smoking/lung cancer study.

(ii) Designed experiments: the experimenter can the levels of
variables that may affect the variable of interest.
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Example (Birthweight study)

GROUP A : 5 or fewer visits

GROUP B : More than 5 visits.

at the control of

(a) Mothers −→ OBSERVATIONAL STUDY

(b) Doctors −→ DESIGNED EXPERIMENT

- after each mother is recruited to take part in the study, they are
RANDOMLY assigned to either GROUP A or GROUP B. This is
termed a

RANDOMIZED EXPERIMENTAL STUDY

This type of study is preferable, but can be more difficult to
implement.
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Terminology

I Response variable (dependent variable): the variable of
interest in the study

I Factors : the variables that may have an effect of the
response variable

I quantitative if measured on a numerical scale
I qualitative otherwise

I Factor Levels: the values of the factors utilized in the
experiment

I Treatments: the factor-level combinations utilized.

I Experimental Units (subjects): the objects on which the
factors are measured or observed.
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Therefore:

I A designed experiment is one for which the analyst or
experimenter controls the specification of treatments and the
method of assigning units to treatments.

I An observational experiment or study is one for which the
analyst simply observes the treatments and response on a
sample of experimental units.
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Example (Birthweight study)

I Response: Birthweight (g)

I Factor: Pre-natal treatment group

I Factor levels: GROUP A or GROUP B

that is, we have a single factor with two factor levels.
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Example (SAT scores)

The SAT scores of female and male students in four schools are to
be compared.

I Response: SAT score

I Factors: SEX and SCHOOL (both qualitative)

I Factor levels:

I SEX: Female and Male
I SCHOOL: A,B,C,D

that is, we have a two factors, SEX with two factor levels and
SCHOOL with four factor levels. There are 8 possible treatments:

(F , A), (F , B), (F , C ), (F , D), (M, A), (M,B), (M, C ), (M, D)
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Example (Pain Relief)

Different pain relief remedies are to be compared : factors are

I REMEDY (quantitative/qualitative, 3 levels)

I Dose level 0
I Dose level 1
I Dose level 2

I AGE GROUP (quantitative/qualitative, 4 levels)

I 0-16 years
I 17-40 years
I 41-65 years
I 66 years and over

I SEX (qualitative, 2 levels)

I Female
I Male

A total of 3× 4× 2 = 24 possible treatment combinations;
REMEDY is the only factor that can be assigned by the analyst.
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Completely Randomized Design

A completely randomized design (CRD) is a design for which
treatments are randomly assigned to experimental units, or in
which random samples of experimental units are selected for each
treatment.

The term can be applied to both experimental and observational
studies. For example,

I if the treatments are FEMALE/MALE for the factor SEX, a
CRD draws independent samples of FEMALES and MALES
for the two treatment groups.

I if the treatments are DOSE 0/DOSE 1, a CRD assigns
experimental units independently to the two treatment groups
at random.
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Statistical Objectives

The experimental units assigned to different treatments
(factor-level combinations) form

independent samples

from

different populations

in a CRD.

We wish to compare treatments: specifically, we wish to compare
the treatment means.

A Multiple Group Comparison of Means !
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Suppose that there are k treatments:

TMT 1 Mean µ1

TMT 2 Mean µ2
...

...
TMT k Mean µk

We wish to test the hypotheses

H0 : µ1 = µ2 = · · · = µk

Ha : At least two of the k treatment means are different

How do we do this ?

What is the relevant test statistic ?
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Comparing k Treatments

Suppose

TMT 1 has n1 experimental units
TMT 2 has n2 experimental units

...
...

TMT k has nk experimental units

Denote by xij the response for unit j in treatment group i , for
j = 1, . . . , ni and i = 1, . . . , k.
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Let

x i =
1

ni

ni∑

j=1

xij

denote the sample mean for treatment i , and

s2
i =

1

ni − 1

ni∑

j=1

(xij − x i )
2

denote the sample variance for treatment i .

Now we consider pooling, that is, combining all units into a single
group.
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Define

I the total sample

n = n1 + · · ·+ nk =
k∑

i=1

ni

I the overall sample mean

x =
1

n

k∑

i=1

ni∑

j=1

xij

I the overall sample variance

s2 =
1

n − 1

k∑

i=1

ni∑

j=1

(xij − x)2
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Finally, consider the pooled sample variance

s2
P =

1

n − k

k∑

i=1

(ni − 1)s2
i

- the extension of the pooled estimate of the population variance
in a two-sample t-test.

Using these quantities, we can derive a test statistic for multiple
group comparison.
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We wish to compare how much variation is due to the

A DIFFERENCE BETWEEN TREATMENTS

and how much is due to

B RANDOM VARIATION WITHIN TREATMENTS

We measure A using the statistic

SST =
k∑

i=1

ni (x i − x)2

SST - Sum of Squares for Treatments
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We measure B using the statistic

SSE =
k∑

i=1

ni∑

j=1

(xij − x i )
2

=
k∑

i=1

ni∑

j=1

(xij − x i )
2

= (n − k)s2
P

SSE - Sum of Squares for Error

NOTE: This measure of random or error variability implicitly
assumes that the variability within the treatment groups is the
same for each group. That is, population variances

σ2
1, . . . , σ

2
k

are equal.

In practice this assumption must be checked.
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Finally, we define the test statistic using the mean levels of
variability

I MST - Mean Square for Treatments

MST =
SST

k − 1
=

1

k − 1

k∑

i=1

ni (x i − x)2

I MSE - Mean Square for Error

MSE =
SSE

n − k
=

1

n − k

k∑

i=1

ni∑

j=1

(xij − x i )
2 = s2

P
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Then the test statistic is

F =
MST

MSE
=

Average Variation due to Treatments

Average Variation due to Errors

F large =⇒ Treatments Different !
F small =⇒ Treatments Similar !

The behaviour of F is given by the following Theorem
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Theorem (ANOVA F -test to compare k treatments in a
Completely Randomized Design)

To test the hypothesis of equal treatment means,

H0 : µ1 = µ2 = · · · = µk

Ha : At least two of the k treatment means are different

the test statistic is

F =
MST

MSE

If H0 is TRUE, then

F ∼ Fisher-F(k − 1, n − k)

and the rejection region for a test at significance level α is the
region to the right of the 1− α probability point of this Fisher-F
distribution, CR .

50



NOTE: If

SS =
k∑

i=1

ni∑

j=1

(xij − x)2

is the overall or total sum of squares, then

SS = SST + SSE

so we can decompose the overall variation (SS) into the variation
due to treatments (SST ) and the variation due to the errors (SSE ).
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Assumptions behind the ANOVA F-test

1. The samples are randomly selected in an independent manner
from the k treatment populations.
[Satisfied in a CRD]

2. All k populations have distributions that are approximately
normal.

3. The k population variances are equal.

σ2
1 = σ2

2 = · · ·σ2
k .
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Example (Milk Quality Data)

The impact on milk protein level of three different diets is being
studied.

Data: Measurements of milk protein levels for n = 1337 samples.

I Response: Milk Protein Level (%)

I Factor: DIET

I Factor levels: k = 3

I 1: Barley
I 2: Barley + Lupins
I 3: Lupins
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TMT 1 TMT 2 TMT 3

ni 425 459 453
xi 3.532 3.430 2.312
s2
i 0.102 0.091 0.114

SST = 10.606

SSE = 136.432

SS = 147.038

k − 1 = 2

n − k = 1334
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Therefore

MST =
SST

k − 1
=

10.606

2
= 5.303

MSE =
SSE

n − k
=

136.432

1334
= 0.102

and

F =
MST

MSE
= 51.851

If H0 is true, that is,
µ1 = µ2 = µ3

then F should look like an observation from a

Fisher-F(k − 1, n − k)

distribution.
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Here we are dealing with the

Fisher-F(2, 1334)

distribution. From tables, we discover that if α = 0.05, then

Fα(2, 1334) = 3.002

and thus we

Reject H0

and conclude that there is a significant impact on milk protein
level due to diet.
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Note: Tables in McClave and Sincich (p 901) only give

F0.05(2, 120) = 3.07

F0.05(2,∞) = 3.00

so we cannot look up F0.05(2, 1334). However, we know that

3.00 < F0.05(2, 1334) < 3.07

and here the test statistic is F = 51.851.
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Are the assumptions met ?

1. Independent samples : Not possible to tell with current
information. In fact, data comprise repeated measurements on
79 cows - potentially not independent, as observations on the
same cow are likely to be more similar.

2. Normal Distributions : Visual inspection of boxplots
indicates that this may be valid.

3. Equal variances :

s2
1 = 0.102 s2

2 = 0.091 s2
3 = 0.114

so assumption appears to be valid
- can we test this formally ?
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Milk Data: 3 Treatments
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Example (Anxiety Response Treatment)

In a study of Alzheimer’s disease and care of its sufferers, a
medication designed to improve anxiety relief has been developed.

In a lab experiment, n = 20 rats were assigned to one of four
(k = 4) treatment groups corresponding to dose-level of the
medication.

A measure of response to a “flee stimulus” was recorded.

I Response: Pull response to stimulus (units of force)

I Factor: DOSE-LEVEL

I Factor levels: k = 4

I Dose 0 (zero units)
I Dose 1 (one unit)
I Dose 2 (two units)
I Dose 3 (three units)
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0 1 2 2

27.0 22.8 21.9 23.5
26.2 23.1 23.4 19.6
28.8 27.7 20.1 23.7
33.5 27.6 27.8 20.8
28.8 24.0 19.3 23.9

We find that

SST = 140.094 SSE = 116.324 SS = 256.418

MST = 46.698 MSE = 7.270

and
F = 6.423

which we need to compare with the Fisher-F(3, 16) distribution.
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For α = 0.05, from McClave and Sincich (p 901)

F0.05(3, 16) = 3.24

and so we

Reject H0

at α = 0.05 and conclude that there is a significant difference
between treatment groups.

p-value is 0.0046.
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Alzheimer’s Medication: Animal model trial
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Note: Here

DOSE 0 DOSE 1 DOSE 2 DOSE 3
s2
i 8.018 5.873 11.315 3.875

so we might suspect that the treatment variances σ2
1, σ

2
2, σ

2
3, σ

2
4 are

not equal. We may test this formally using

LEVENE’S TEST

- SPSS can report this test result.

Note: Visual inspection can give an idea of whether the equal
variance assumption is valid, or whether the populations are
normal. But the sample sizes may be small, so that visual
inspection or testing may not detect deviations from these
assumptions.

Ideally we would like to be able to relax these assumptions.
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The ANOVA Table

For a completely randomized design, we may report the results of
the ANOVA F-test in a stylized form, the ANOVA Table

SOURCE DF SS MS F

TREATMENTS k − 1 SST MST =
SST

(k − 1)
F =

MST

MSE

ERROR n − k SSE MSE =
SSE

(n − k)

TOTAL n − 1 SS

Note

(i) (k − 1) + (n − k) = (n − 1)

(ii) SST + SSE = SS

i.e. we can fill in missing values if they are not given.
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Sometimes an extra column is added at the right of the table to
give the p-value of the ANOVA F-test.

SOURCE DF SS MS F p

TMT k − 1 SST MST F =
MST

MSE
p-val

ERROR n − k SSE MSE

TOTAL n − 1 SS

where p-val solves

MST

MSE
= Fp-val(k − 1, n − k)

and Fα(ν1, ν2) is the (1−α) probability point of the Fisher-F distribution.
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SPSS Handout: Examples

I DIET: milk-protein level example (p. 1)

I DOSE-LEVEL: pull-strength in Alzheimer’s example (p. 3)

I DIAGNOSIS: (p. 5)

I RESPONSE: gut permeability of drug mannitol in AIDS/HIV
patients

I FACTOR: AIDS/HIV Status
I FACTOR LEVELS: k = 4

I AIDS - Full AIDS
I ARC - AIDS-related conditions
I HIV+ - HIV positive
I HIV- - HIV negative
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SPSS Handout: Examples

I BATCH NUMBER: bacteria level (per mill.) in different
batches of milk (p. 7)

I RESPONSE: Bacteria level count per million
I FACTOR: Batch number
I FACTOR LEVELS: 1,2,3,4,5 (k = 5)

I TREATMENT GROUP: Post-traumatic stress disorder
(PTSD) score in different treatment groups(p. 9)

I RESPONSE: PTSD score
I FACTOR: Therapeutic treatment method
I FACTOR LEVELS: k = 4

I SIT - ”Stress Innoculation Therapy”
I RE - ”Relive Experience”
I SC - ”Standard Counselling”
I WL - ”Waiting List” (Control)
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Levene’s Test

To test

H0 = σ2
1 = σ2

2 = · · · = σ2
k

H1 = At least one pair of σ2 different.

Test statistic

W =
(n − k)

(k − 1)

SSTZ

SSEZ
=

MSTZ

MSEZ

where SSTZ and SSEZ are the usual sums of squares evaluated for
the new data zij where

zij = |xij − x i |.

If H0 is true
W ∼ Fisher-F(k − 1, n − k).
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Example (PTSD Example (see handout))

n = 45, k = 4.

F-statistic F = 3.046

Critical Value F0.05(3, 41) l 2.84

F0.025(3, 41) l 3.46

F0.01(3, 41) l 4.31

Tables in McClave and Sincich give Fα(3, 40).

=⇒ Reject H0 at α = 0.05 (p = 0.039).

BUT Levene’s Test suggests that the assumption of equal
variances is NOT valid.
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Why do we need the three assumptions ?

I independence

I Normality

I equal variances

- so that we can predict (under H0) that

F ∼ Fisher-F(k − 1, n − k)

and complete the test (compute p-values and the rejection region).

But our hypothesis of interest is

H0 : No difference between treatments
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Under this hypothesis, the treatment labels

SHOULD NOT MATTER !

i.e. we should be able to exchange the labels, and not notice any
major difference in the test statistic.

This leads us to consider permutation or randomization tests.

i.e. we compute the test statistic for all possible relabellings
consistent with H0, retaining the group sample sizes, and use these
values to compute the rejection region.
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Randomization/Permutation Tests

Suppose that there are N possible relabellings that give rise to test
statistics

F1,F2, . . . , FN

Then the rejection region for significance level α is the interval to
the right of

N(1− α)th largest of the values F1, F2, . . . , FN

and the p-value is

Number of F1,F2, . . . ,FN ≥ F

N

where

F =
MST

MSE

is the true test statistic.
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If the group sample sizes are n1, n2, . . . , nk then

N =
n!

n1!n2! . . . nk !

where
n! = n(n − 1)(n − 2) . . . 3.2.1

(”n factorial”) - potentially very large.
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Example (PTSD Example)

k = 4, n = 45 (n1 = 14, n2 = 10, n3 = 11, n4 = 10)

There are
45!

14!10!11!10!
= 2.610× 1024

possible relabellings: a very big number.

We compute F = MST
MSE for each relabelling. For the real data,

F = 3.046.
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Example (PTSD Example (continued))

Using this approach, we compute for α = 0.05

CRITICAL VALUE : CR = 2.844

p-VALUE : p = 0.040

Compare this with the ANOVA F-test values

CRITICAL VALUE : CR = 2.833

p-VALUE : p = 0.039

(using the Fisher-F(3,41) distribution.

Thus we obtain virtually identical results; but the randomization
test does not need the assumptions of normality or equal
variances.
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Permutation Distribution

F statistic
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Example (PTSD Example (continued))

Thus the null hypothesis (of equal means) is

REJECTED

under both procedures at the α = 0.05 significance level.

In this case, the computations give similar conclusions. Here the
truth or otherwise of the normality/equal variance assumptions
does not matter.
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Final Note on ANOVA F-test for a CRD

If k = 2, consider F = MST/MSE ;

MST =
1

k − 1

k∑

i=1

ni (x i − x)2 = n1(x1 − x)2 + n2(x2 − x)2

=
n1n2

n1 + n2
(x1 − x2)

2

MSE =
1

n − k

k∑

i=1

ni∑

j=1

(xij − x i )
2 = s2

P

=
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
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Therefore

F =

(
n1n2

n1 + n2

)
(x1 − x2)

2

s2
P

=




(x1 − x2)

sp

√
1

n1
+

1

n2




2

Thus F = t2, where t is the two-sample t-test statistic.

Thus if k = 2, the ANOVA F-test and the two sample t-test are
EQUIVALENT

t ∼ Student-t(n − 2)

F ∼ Fisher-F(1, n − 2)

and we must get the same conclusion (to reject H0 or otherwise)
using either statistic.
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