Non-Parametric Statistics

One and Two Sample Tests

Non-parametric tests are normally based on ranks of the data samples, and test hypotheses relating to quantiles of the probability distribution representing the population from which the data are drawn. Specifically, tests concern the population median, η, where

$$
\operatorname{Pr}[\text { Observation } \leq \eta]=\frac{1}{2}
$$

The sample median, $x_{\text {MED }}$, is the mid-point of the sorted sample; if the data x_{1}, \ldots, x_{n} are sorted into ascending order, then

$$
x_{\mathrm{MED}}=\left\{\begin{array}{cl}
x_{m} & n \text { odd, } n=2 m+1 \\
\frac{x_{m}+x_{m+1}}{2} & n \text { even, } n=2 m
\end{array}\right.
$$

1 One Sample Test for Median: The Sign Test

For a single sample of size n, to test the hypothesis $\eta=\eta_{0}$ for some specified value η_{0} we use the Sign Test.. The test statistic S depends on the alternative hypothesis, H_{a}.
(a) For one-sided tests, to test

$$
\begin{aligned}
& H_{0}: \eta=\eta_{0} \\
& H_{a}:
\end{aligned}: \eta>\eta_{0}
$$

we define test statistic S by

$$
S=\text { Number of observations greater than } \eta_{0}
$$

whereas to test

$$
\begin{array}{lll}
H_{0} & : \eta=\eta_{0} \\
H_{a} & : & \eta<\eta_{0}
\end{array}
$$

we define S by

$$
S=\text { Number of observations less than } \eta_{0}
$$

If H_{0} is true, it follows that

$$
S \sim \operatorname{Binomial}\left(n, \frac{1}{2}\right)
$$

The p-value is defined by

$$
p=\operatorname{Pr}[X \geq S]
$$

where $X \sim \operatorname{Binomial}(n, 1 / 2)$. The rejection region for significance level α is defined implicitly by the rule

$$
\text { Reject } H_{0} \text { if } \alpha \geq p .
$$

The Binomial distribution is tabulated on pp 885-888 of McClave and Sincich.
(b) For a two-sided test,

$$
\begin{array}{ll}
H_{0} & : \eta=\eta_{0} \\
H_{a} & : \quad \eta \neq \eta_{0}
\end{array}
$$

we define the test statistic by

$$
S=\max \left\{S_{1}, S_{2}\right\}
$$

where S_{1} and S_{2} are the counts of the number of observations less than, and greater than, η_{0} respectively. The p-value is defined by

$$
p=2 \operatorname{Pr}[X \geq S]
$$

where $X \sim \operatorname{Binomial}(n, 1 / 2)$.

Notes :

1. The only assumption behind the test is that the data are drawn independently from a continuous distribution.
2. If any data are equal to η_{0}, we discard them before carrying out the test.
3. Large sample approximation. If n is large (say $n \geq 30$), and $X \sim \operatorname{Binomial}(n, 1 / 2)$, then it can be shown that

$$
X \nsim \operatorname{Normal}(n p, n p(1-p))
$$

Thus for the sign test, where $p=1 / 2$, we can use the test statistic

$$
Z=\frac{S-\frac{n}{2}}{\sqrt{n \times \frac{1}{2} \times \frac{1}{2}}}=\frac{S-\frac{n}{2}}{\sqrt{n} \times \frac{1}{2}}
$$

and note that if H_{0} is true,

$$
Z \doteqdot \operatorname{Normal}(0,1) .
$$

so that the test at $\alpha=0.05$ uses the following critical values

$$
\begin{array}{lll}
H_{a}: \eta>\eta_{0} & \text { then } & C_{R}=1.645 \\
H_{a}: \eta<\eta_{0} & \text { then } & C_{R}=-1.645 \\
H_{a}: \eta \neq \eta_{0} & \text { then } & C_{R}= \pm 1.960
\end{array}
$$

4. For the large sample approximation, it is common to make a continuity correction, where we replace S by $S-1 / 2$ in the definition of Z

$$
Z=\frac{\left(S-\frac{1}{2}\right)-\frac{n}{2}}{\sqrt{n} \times \frac{1}{2}}
$$

Tables of the standard Normal distribution are given on p 894 of McClave and Sincich.

2 Two Sample Tests for Independent Samples: The Mann-Whitney-Wilcoxon Test

For a two independent samples of size n_{1} and n_{2}, to test the hypothesis of equal population medians

$$
\eta_{1}=\eta_{2}
$$

we use the Wilcoxon Rank Sum Test, or an equivalent test, the Mann-Whitney U Test; we refer to this as the

Mann-Whitney-Wilcoxon (MWW) Test

By convention it is usual to formulate the test statistic in terms of the smaller sample size. Without loss of generality, we label the samples such that

$$
n_{1}>n_{2} .
$$

The test is based on the sum of the ranks for the data from sample 2.
EXAMPLE : $n_{1}=4, n_{2}=3$ yields the following ranked data

$$
\begin{array}{lllll}
\text { SAMPLE 1 } & 0.31 & 0.48 & 1.02 & 3.11 \\
\text { SAMPLE } 2 & 0.16 & 0.20 & 1.97 &
\end{array}
$$

SAMPLE	2	2	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	2	$\mathbf{1}$
	0.16	0.20	$\mathbf{0 . 3 1}$	$\mathbf{0 . 4 8}$	$\mathbf{1 . 0 2}$	1.97	$\mathbf{3 . 1 1}$
RANK	1	2	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	6	$\mathbf{7}$

Thus the rank sum for sample 1 is

$$
R_{1}=3+4+5+7=19
$$

and the rank sum for sample 2 is

$$
R_{2}=1+2+6=9 .
$$

Let η_{1} and η_{2} denote the medians from the two distributions from which the samples are drawn. We wish to test

$$
H_{0}: \eta_{1}=\eta_{2}
$$

Two related test statistics can be used

- Wilcoxon Rank Sum Statistic

$$
W=R_{2}
$$

- Mann-Whitney U Statistic

$$
U=R_{2}-\frac{n_{2}\left(n_{2}+1\right)}{2}
$$

We again consider three alternative hypotheses:

$$
\begin{array}{ccc}
H_{a} & : & \eta_{1}<\eta_{2} \\
H_{a} & : & \eta_{1}>\eta_{2} \\
H_{a} & : & \eta_{1}=\eta_{2}
\end{array}
$$

and define the rejection region separately in each case.

Large Sample Test

If $n_{2} \geq 10$, a large sample test based on the Z statistic

$$
Z=\frac{U-\frac{n_{1} n_{2}}{2}}{\sqrt{\frac{n_{1} n_{2}\left(n_{1}+n_{2}+1\right)}{12}}}
$$

can be used. Under the hypothesis $H_{0}: \eta_{1}=\eta_{2}$,

$$
Z \doteqdot \operatorname{Normal}(0,1)
$$

so that the test at $\alpha=0.05$ uses the following critical values

$$
\begin{array}{lll}
H_{a}: \eta_{1}>\eta_{2} & \text { then } & C_{R}=-1.645 \\
H_{a}: \eta_{1}<\eta_{2} & \text { then } & C_{R}=1.645 \\
H_{a}: \eta_{1} \neq \eta_{2} & \text { then } & C_{R}= \pm 1.960
\end{array}
$$

Small Sample Test

If $n_{1}<10$, an exact but more complicated test can be used. The test statistic is R_{2} (the sum of the ranks for sample 2). The null distribution under the hypothesis $H_{0}: \eta_{1}=\eta_{2}$ can be computed, but it is complicated.
The table on p. 832 of McClave and Sincich gives the critical values (T_{L} and T_{U}) that determine the rejection region for different n_{1} and n_{2} values up to 10 .

- One-sided tests:

$$
\begin{array}{lll}
H_{a}: \eta_{1}>\eta_{2} & \text { Rejection Region is } & R_{2} \leq T_{L} \\
H_{a}: \eta_{1}<\eta_{2} & \text { Rejection Region is } & R_{2} \geq T_{U}
\end{array}
$$

These are tests at the $\alpha=0.025$ significance level.

- Two-sided tests:

$$
H_{a}: \eta_{1} \neq \eta_{2} \quad \text { Rejection Region is } \quad R_{2} \leq T_{L} \text { or } R_{2} \geq T_{U}
$$

This is a test at the $\alpha=0.05$ significance level.

Notes :

1. The only assumption is are needed for the test to be valid is that the samples are independently drawn from two continuous distributions.
2. The sum of the ranks across both samples is

$$
R_{1}+R_{2}=\frac{\left(n_{1}+n_{2}\right)\left(n_{1}+n_{2}+1\right)}{2}
$$

3. If there are ties (equal values) in the data, then the rank values are replaced by average rank values.

DATA VALUE	0.16	0.20	0.31	0.31	0.48	1.97	3.11
ACTUAL RANK	1	2	3	3	5	6	7
AVERAGE RANK	1	2	3.5	3.5	5	6	7

Examples

EXAMPLE 1: Sign Test: Water Content Example

The following data are measurements of percentage water content of soil samples collected by two experimenters. We wish to test the hypothesis

$$
H_{0}: \eta=9.0
$$

for each experiment.

Experimenter 1:	$n=10$	5.5	6.0	6.5	7.6	7.6	7.7	8.0	8.2	9.1	15.1
Experimenter 2:	$n=20$	5.6	6.1	6.3	6.3	6.5	6.6	7.0	7.5	7.9	8.0
		8.0	8.1	8.1	8.2	8.4	8.5	8.7	9.4	14.3	26.0

To perform the test, we need tables of the Binomial distribution with $p=1 / 2$. The individual probabilities are given by the formula

$$
\operatorname{Pr}[X=x]=\binom{n}{x} p^{x}(1-p)^{n-x}=\binom{n}{x} \frac{1}{2^{n}}=\frac{n!}{x!(n-x)!} \frac{1}{2^{n}} \quad x=0,1, \ldots, n
$$

We test at the $\alpha=0.05$ level. For the first experiment, with $n=10$:

- For a test against the alternative hypothesis

$$
H_{a}: \eta>9.0
$$

the test statistic is

$$
S=\text { Number of observations greater than } 9 \quad \therefore \quad S=2
$$

and the p-value is

$$
p=\operatorname{Pr}[X \geq 2]=1-\operatorname{Pr}[X<2]=1-\operatorname{Pr}[X=0]-\operatorname{Pr}[X=1]=0.9893
$$

so we do not reject H_{0} in favour of this H_{a}.

- For a test against the alternative hypothesis

$$
H_{a}: \eta<9.0
$$

the test statistic is

$$
S=\text { Number of observations less than } 9 \quad \therefore \quad S=8
$$

and the p-value is

$$
p=\operatorname{Pr}[X \geq 8]=\operatorname{Pr}[X=8]+\operatorname{Pr}[X=9]+\operatorname{Pr}[X=10]=0.0547
$$

so we do not reject H_{0} in favour of this H_{a}.

- For a test against the alternative hypothesis

$$
H_{a}: \eta \neq 9.0
$$

the test statistic is

$$
S=\max \left\{S_{1}, S_{2}\right\}=\max \{2,8\}=8
$$

and the p-value is

$$
p=2 \operatorname{Pr}[X \geq 8]=2(\operatorname{Pr}[X=8]+\operatorname{Pr}[X=9]+\operatorname{Pr}[X=10])=0.1094
$$

so we do not reject H_{0} in favour of this H_{a}.

For the second experiment, with $n=20$:

- For a test against the alternative hypothesis $H_{a}: \eta>9.0$, the test statistic is $S=3$. The p-value is therefore

$$
p=\operatorname{Pr}[X \geq 3]=1-\operatorname{Pr}[X<3]=1-\operatorname{Pr}[X=0]-\operatorname{Pr}[X=1]-\operatorname{Pr}[X=2]=0.9998 .
$$

so we do not reject H_{0} in favour of this H_{a}.

- For a test against the alternative hypothesis $H_{a}: \eta<9.0$, the test statistic $S=17$. The p-value is therefore

$$
p=\operatorname{Pr}[X \geq 17]=\operatorname{Pr}[X=17]+\operatorname{Pr}[X=18]+\operatorname{Pr}[X=19]+\operatorname{Pr}[X=20]=0.0013 .
$$

so we do reject H_{0} in favour of this H_{a}.

- For a test against the alternative hypothesis $H_{a}: \eta \neq 9.0$, the test statistic is $S=\max \left\{S_{1}, S_{2}\right\}=$ $\max \{3,17\}=17$. The p-value is therefore

$$
p=2 \operatorname{Pr}[X \geq 17]=2(\operatorname{Pr}[X=17]+\operatorname{Pr}[X=18]+\operatorname{Pr}[X=19]+\operatorname{Pr}[X=20])=0.0026 .
$$

so we do reject H_{0} in favour of this H_{a}.

This test can be implemented using SPSS, using the

$$
\text { Analyze } \rightarrow \text { Nonparametric Tests } \rightarrow \text { Binomial }
$$

pulldown menus. The test can be carried out by
(a) Selecting the test variable from the variables list
(b) Set the Cut Point equal to $\eta_{0}=9$.

A two-sided test is carried out at the $\alpha=0.05$ level. The SPSS output is presented below for the two experiments in turn:

Binomial Test

		Category	N	Observed Prop.	Test Prop.	Exact Sig. (2-tailed)
\% Water content	Group 1	$<=9$	8	.80	.50	.109
	Group 2	>9	2	.20		
	Total		10	1.00		

Binomial Test

		Category	N	Observed Prop.	Test Prop.	Exact Sig. (2-tailed)
\% Water content	Group 1	$<=9$	17	.85	.50	.003
	Group 2	>9	3	.15		
	Total		20	1.00		

EXAMPLE 2: Mann-Whitney-Wilcoxon Test: Low Birthweight Example

The birthweights (in grammes) of babies born to two groups of mothers A and B are displayed below: Thus $n_{1}=9, n_{2}=8$. From this sample (which has ties, so we need to use average ranks), we find that

$$
\begin{array}{lllllllllll}
\text { Group A : } & n=9 & 2164 & 2600 & 2184 & 2080 & 1820 & 2496 & 2184 & 2080 & 2184 \\
\text { Group B : } & n=8 & 2576 & 3224 & 2704 & 2912 & 2444 & 3120 & 2912 & 3848 & \\
& & R_{1}=48 & R_{2}=105 & & &
\end{array}
$$

so that the two statistics are

$$
\begin{aligned}
\text { Wilcoxon } & W=R_{2}=105 \\
\text { Mann-Whitney } & U=R_{2}-\frac{n_{2}\left(n_{2}+1\right)}{2}=105-36=69
\end{aligned}
$$

- For the small sample test, from tables on p832 in McClave and Sincich, we find

$$
T_{L}=51 \quad T_{U}=93
$$

Thus $W>93$, so we

$$
\begin{array}{r}
\text { Do not reject } H_{0} \text { against } H_{a}: \eta_{1}>\eta_{2} \text { as } \quad W=R_{2}>T_{L} \\
\text { Reject } H_{0} \text { against } H_{a}: \eta_{1}<\eta_{2} \text { as } \quad W=R_{2}>T_{U} \\
\text { Reject } H_{0} \text { against } H_{a}: \eta_{1} \neq \eta_{2} \text { as } \quad W=R_{2}>T_{U}
\end{array}
$$

Note that the one-sided tests are carried out at $\alpha=0.025$, the two sided test is carried out at $\alpha=0.05$.

- For the large sample test, we find

$$
Z=\frac{U-\frac{n_{1} n_{2}}{2}}{\sqrt{\frac{n_{1} n_{2}\left(n_{1}+n_{2}+1\right)}{12}}}=3.175
$$

Thus we
Do not reject H_{0} against $H_{a}: \eta_{1}>\eta_{2}$ as $Z>C_{R}=-1.645$
Reject H_{0} against $H_{a}: \eta_{1}<\eta_{2}$ as $Z>C_{R}=1.645$
Reject H_{0} against $H_{a}: \eta_{1} \neq \eta_{2}$ as $Z>C_{R_{2}}=1.960$
All tests are carried out at $\alpha=0.05$.
This test can be implemented using SPSS, using the

$$
\text { Analyze } \rightarrow \text { Nonparametric Tests } \rightarrow \text { Two Independent Samples }
$$

pulldown menus. Note, however, that SPSS uses different rules for defining the test statistics, although it yields the same conclusions for a two-sided test.

EXAMPLE 3: Mann-Whitney-Wilcoxon Test: Treadmill Test Example

The treadmill stress test times (in seconds) of two groups of patients (disease group and healthy controls) are displayed below:

Disease :	$n=10$	864	636	638	708	786	600	1320	750	594	750
Healthy:	$n=8$	1014	684	810	990	840	978	1002	1110		

Thus $n_{1}=10, n_{2}=8$. From this sample (which has ties, so we need to use average ranks), we find that

$$
R_{1}=70 \quad R_{2}=101
$$

so that the two statistics are

$$
\begin{aligned}
\text { Wilcoxon } & W=R_{2}=101 \\
\text { Mann-Whitney } & U=R_{2}-\frac{n_{2}\left(n_{2}+1\right)}{2}=101-36=65
\end{aligned}
$$

- For the small sample test, from tables on p832 in McClave and Sincich, we find

$$
T_{L}=54 \quad T_{U}=98
$$

Thus $W>98$, so we

$$
\begin{array}{r}
\text { Do not reject } H_{0} \text { against } H_{a}: \eta_{1}>\eta_{2} \text { as } \quad W=R_{2}>T_{L} \\
\text { Reject } H_{0} \text { against } H_{a}: \eta_{1}<\eta_{2} \text { as } \quad W=R_{2}>T_{U} \\
\text { Reject } H_{0} \text { against } H_{a}: \eta_{1} \neq \eta_{2}
\end{array} \text { as } \quad W=R_{2}>T_{U}
$$

Again, the one-sided tests are carried out at $\alpha=0.025$, the two sided test is carried out at $\alpha=0.05$.

- For the large sample test, we find

$$
Z=\frac{U-\frac{n_{1} n_{2}}{2}}{\sqrt{\frac{n_{1} n_{2}\left(n_{1}+n_{2}+1\right)}{12}}}=2.221
$$

Thus we
Do not reject H_{0} against $H_{a}: \eta_{1}>\eta_{2}$ as $Z>C_{R}=-1.645$
Reject H_{0} against $H_{a}: \eta_{1}<\eta_{2}$ as $Z>C_{R}=1.645$
Reject H_{0} against $H_{a}: \eta_{1} \neq \eta_{2}$ as $Z>C_{R_{2}}=1.960$
All tests are carried out at $\alpha=0.05$.

Two Dependent Samples and Multiple Independent Samples

3 Two Dependent Samples: Wilcoxon Signed Rank Test

Data collected from the same experimental units are in general dependent. For example, if data are collected on two occasions (time 1 and time 2, or before and after treatment) from the same n individuals, then the resulting data samples $\left(y_{11}, \ldots, y_{n 1}\right)$ and $\left(y_{12}, \ldots, y_{n 2}\right)$ are dependent. Such data are often referred to as paired. We wish to test whether there is a significant change across the two measurements.
For a parametric test, we typically assume that the within-individual differences

$$
x_{i}=y_{i 1}-y_{i 2} \quad i=1, \ldots, n
$$

are Normally distributed, and test the hypothesis that the mean difference μ is zero

$$
H_{0}: \mu=0
$$

using a one-sample Z-test (σ known) or T-test (σ unknown), with statistic

$$
z=\frac{\bar{x}}{\sigma / \sqrt{n}} \quad \text { or } \quad t=\frac{\bar{x}}{s / \sqrt{n}}
$$

distributed as $\operatorname{Normal}(0,1)$ or $\operatorname{Student}(n-1)$ respectively.
For a non-parametric test, we can use the Wilcoxon Signed Rank test, which proceeds as follows:

1. Compute the within-individual differences

$$
x_{i}=y_{i 1}-y_{i 2} \quad i=1, \ldots, n
$$

If any $x_{i}=0$, then that data point is discarded and the sample size adjusted.
2. Sort the absolute values s_{1}, \ldots, s_{n} of $x_{1}, x_{2}, \ldots, x_{n}$ into ascending order, and assign ranks 1 up to n. If there are ties, assign average ranks.
3. Form the two rank sums T_{+}and T_{-}, where

$$
\begin{aligned}
& T_{+}=\text {Sum of ranks for those } x_{i}>0 \\
& T_{-}=\text {Sum of ranks for those } x_{i}<0
\end{aligned}
$$

The test statistic is a function of these rank sums. Heuristically, if the statistic T_{+}is large and T_{-}is small, this implies that the experimental units where $y_{i 1}>y_{i 2}$ have a larger (in magnitude) difference than those where $y_{i 1}<y_{i 2}$. This indicates an overall decrease between the first and second measurements. Conversely, if the statistic T_{-}is large and T_{+}is small, this implies that the experimental units where $y_{i 2}>y_{i 1}$ have a larger (in magnitude) difference than those where $y_{i 2}<y_{i 1}$. This indicates an overall increase between the first and second measurements.

We test the null hypothesis

$$
H_{0} \text { : No change between first and second measurements }
$$

against the three alternative hypotheses
(1) H_{a} : Significant decrease between first and second measurements
(2) H_{a} : Significant increase between first and second measurements
(3) H_{a} : Significant change between first and second measurements

To test H_{0} vs (1), we perform a one-sided test using the statistic T_{-}; the critical value in the test is denoted T_{0}, and is determined by the table on p. 839 of McClave and Sincich:

$$
\text { If } T_{-} \leq T_{0} \text {, we reject } H_{0} \text { in favour of } H_{a} \text { (1) }
$$

To test H_{0} vs (2), we perform a one-sided test using the statistic T_{+}; the critical value is T_{0} and

$$
\text { If } T_{+} \leq T_{0} \text {, we reject } H_{0} \text { in favour of } H_{a}(2)
$$

To test H_{0} vs (3), we perform a two-sided test using the statistic $T=\min \left\{T_{-}, T_{+}\right\}$; the critical value is T_{0} and

$$
\text { If } T \leq T_{0} \text {, we reject } H_{0} \text { in favour of } H_{a} \text { (3) }
$$

Notes :

1. The only assumption behind the test is that the difference data x_{i} are drawn independently from a continuous distribution.
2. Large Sample Test: For $n \geq 25$, we can use a large sample version of the test based on T_{+}, and the Z statistic

$$
Z=\frac{T_{+}-\frac{n(n+1)}{4}}{\sqrt{\frac{n(n+1)(2 n+1)}{24}}}
$$

If H_{0} is true, then $Z \approx \operatorname{Normal}(0,1)$, so that the test at $\alpha=0.05$ uses the following critical values

$$
\text { For } H_{a}(1) \text { use } C_{R}=1.645
$$

For $H_{a}(2)$ use $C_{R}=-1.645$
For H_{a} (3) use $C_{R}= \pm 1.960$

EXAMPLE 1: Haemodialysis Data

The following data are measurements of the heparin cofactor II (HCII) to plasma protein ratios in a group of patients at baseline and five months after haemodialysis.
Reference: Toulon, P et al. (1987) Antithrombin III and heparin cofactor II in patients with chronic renal failure undergoing regular hemodialysis, Thrombosis and Haemostasis, 3;57(3): pp263-8.

Patient	Before	After					
	$y_{i 1}$	$y_{i 2}$	x_{i}	s_{i}	Rank	Ave. Rank	
1	2.11	2.15	-0.04	0.04	3	3.5	
2	1.85	2.11	-0.26	0.26	10	10.0	
3	1.82	1.93	-0.11	0.11	8	8.0	
4	1.75	1.83	-0.08	0.08	6	6.0	
5	1.54	1.90	-0.36	0.36	11	11.0	
6	1.52	1.56	-0.04	0.04	3	3.5	
7	1.49	1.44	0.05	0.05	5	5.0	
8	1.44	1.43	0.01	0.01	1	1.5	
9	1.38	1.28	0.10	0.10	7	7.0	
$\mathbf{1 0}$	$\mathbf{1 . 3 0}$	$\mathbf{1 . 3 0}$	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	-	-	OMIT
11	1.20	1.21	-0.01	0.01	1	1.5	
12	1.19	1.30	-0.11	0.11	9	9.0	
						$T_{+}=13.5$	
						$T_{-}=52.5$	

From the table on p 839 , for $n=12-1=11$, we find that the $\alpha=0.025 / 0.05$ (one/two-sided) significance level critical value is $T_{0}=11$. Thus using T_{+}, we cannot reject either of the null hypotheses (2) and (3), as $T_{+}>T_{0}$. Note that $Z=-1.734$, so if the approximation was valid, we would be able to reject (2) at $\alpha=0.05$.

4 Three or more independent samples: The Kruskal-Wallis and Friedman Tests

We now seek non-parametric tests that can be used for multiple independent samples, such as those found in the Completely Randomized Design (CRD) and Randomized Block Design (RBD) described in the ANOVA section. The non-parametric equivalents of the Fisher-F tests for these two designs are

- The Kruskal-Wallis \boldsymbol{H} test for a Completely Randomized Design
- Friedman's test for a Randomized Block Design

4.1 Kruskal-Wallis Test

In a CRD, we have k independent groups, corresponding to k different treatments, with sample sizes n_{1}, \ldots, n_{k}. Let $n=n_{1}+\cdots+n_{k}$. To compute the test statistic, H, we

1. Pool the data, sort them into ascending order, and assign ranks. If there are ties in the data, then average ranks are used.
2. For $j=1, \ldots, k$, compute the rank sum R_{j}

$$
R_{j}=\text { Sum of ranks for data from sample } j \text {. }
$$

To test the hypothesis
H_{0} : No difference between the population distributions of the k groups
H_{a} : At least two population distributions different
the test statistic is

$$
H=\frac{12}{n(n+1)} \sum_{j=1}^{k} \frac{R_{j}^{2}}{n_{j}}-3(n+1)
$$

If H_{0} is true, then for large n,

$$
H \rightleftharpoons \text { Chisquared }(k-1) .
$$

Notes :

1. The test assumes that the k samples are independently drawn from continuous populations.
2. For the approximation to be valid, there should be at least five observations in each sample, and the number of ties should be small.

EXAMPLE 2: Mucociliary efficiency data

The data are measures of mucociliary efficiency from the rate of removal of dust in normal subjects (Group 1), subjects with obstructive airway disease (Group 2), and subjects with asbestosis (Group 3).
Reference: Myles Hollander, M and Douglas A. Wolfe (1973), Nonparametric statistical inference, New York: John Wiley \& Sons. pp115-120.

Group	1	1	1	1	1	2	2	2	2	3	3	3	3	3
y	2.9	3.0	2.5	2.6	3.2	3.8	2.7	4.0	2.4	2.8	3.4	3.7	2.2	2.0
Rank	8	9	4	5	10	13	6	14	3	7	11	12	2	1

Hence $R_{1}=36, R_{2}=36$ and $R_{3}=33$, and the test statistic $H=0.7714$. To complete the test, we compare with the $\alpha=0.05$ quantile of the Chisquared $(k-1)=$ Chisquared(2) distribution. We have

$$
\text { Chisq }_{0.05}(2)=5.99>H \quad \therefore \quad \text { No evidence to reject } H_{0}
$$

and a p-value of $p=0.680$.

4.2 Friedman Test

In a RBD, we have k treatment groups, and a blocking factor. For example, we might have k repeated measurements on the same b experimental units, and $n=b k$ observations in total. To compute the test statistic, F_{r}, we proceed as follows.

1. Within each block separately, sort the k data values into ascending order, and assign ranks. If there are ties in the data, then average ranks are used.
2. For $j=1, \ldots, k$, compute the rank sum R_{j}

$$
R_{j}=\text { Sum of ranks for data from treatment } j .
$$

To test the hypothesis
H_{0} : No difference between the population distributions of the k treatment groups
H_{a} : At least two population distributions different
the test statistic is

$$
F_{r}=\frac{12}{b k(k+1)} \sum_{j=1}^{k} R_{j}^{2}-3 b(k+1)
$$

If H_{0} is true, then for large n,

$$
F_{r} \rightleftharpoons \operatorname{Chisq}(k-1)
$$

Notes :

1. The test assumes that the data are drawn independently from continuous populations, with random assignment of treatments within blocks.
2. For the approximation to be valid, it is recommended that b or k is at least five, and the number of ties should be small.

EXAMPLE 3: Skin potential under hypnosis

A study was conducted to investigate whether hypnosis has the same effect on skin potential for four different emotions. Eight subjects were asked to display fear, joy, sadness and calmness under hypnosis, and the resulting skin potential (measured in millivolts) was recorded for each emotion. Thus in this experiment, $b=8$ and $k=4$.

	Fear		Joy		Sadness		Calmness	
Subject	y	Rank	y	Rank	y	Rank	y	Rank
1	23.1	4	22.7	3	22.5	1	22.6	2
2	57.6	4	53.2	2	53.7	3	53.1	1
3	10.5	3	9.7	2	10.8	4	8.3	1
4	23.6	4	19.6	3	21.1	2	21.6	1
5	11.9	1	13.8	4	13.7	3	13.3	2
6	54.6	4	47.1	3	39.2	2	37.0	1
7	21.0	4	13.6	1	13.7	2	14.8	3
8	20.3	3	23.6	4	16.3	2	14.8	1
Rank Sum		27		20		19		14

Thus the within-treatment rank sums are $R_{1}=27, R_{2}=20, R_{3}=19$ and $R_{4}=14$ and thus $F_{r}=6.45$. To complete the test, we compare with the $\alpha=0.05$ quantile of the

$$
\text { Chisquared }(k-1)=\text { Chisquared }(3)
$$

distribution. We have

$$
\text { Chisq }_{0.05}(3)=7.81>F_{r} \quad \therefore \quad \text { No evidence to reject } H_{0}
$$

and a p-value of $p=0.092$.

5 The Role of Randomization/Permutation Tests

Randomization or Permutation procedures are useful for computing exact null distributions for nonparametric test statistics when sample sizes are small.

Suppose that two data samples $x_{1} \ldots, x_{n_{1}}$ and $y_{1} \ldots, y_{n_{2}}$ (where $n_{1} \geq n_{2}$) have been obtained, and we wish to carry out a comparison of the two populations from which the samples are drawn. The Wilcoxon test statistic, W, is the sum of the ranks for the second sample. The permutation test proceeds as follows:

1. Let $n=n_{1}+n_{2}$. Assuming that there are no ties, the pooled and ranked samples will have ranks

$$
\begin{array}{lllll}
1 & 2 & 3 & \ldots & n
\end{array}
$$

2. The test statistic is $W=R_{2}$, the rank sum for sample two items. For the observed data, W will be the sum of n_{2} of the ranks given in the list above.
3. If the null hypothesis

$$
H_{0}: \text { No difference between population } 1 \text { and population2 }
$$

were true, then there should be no pattern in the group labels when sorted into ascending order; the sorted data would give rise a random assortment of group 1 and group 2 labels.
4. To obtain the exact distribution of W under H_{0} (for the assessment of statistical significance), we could compute W for all possible permutations of the group labels, and then form the probability distribution of the values of W. We call this the permutation null distribution.
5. But W is a rank sum, so we can compute the permutation null distribution simply by tabulating all possible subsets of size n_{2} of the set of ranks $\{1,2,3, \ldots, n\}$.
6. There are

$$
\binom{n}{n_{2}}=\frac{n!}{n_{1}!n_{2}!}=N
$$

say possible subsets of size n_{2}; for $n=6$ and $n_{2}=2$, the number of subsets of size n_{2} is

$$
\binom{8}{2}=\frac{8!}{6!2!}=28
$$

However, the number of subsets increases dramatically as n increases; for $n_{1}=n_{2}=10$, so that $n=20$, the number of subsets of size n_{2} is

$$
\binom{20}{10}=\frac{20!}{10!10!}=184756
$$

7. The exact rejection region and p-value are computed from the permutation null distribution. Let $W_{i}, i=1, \ldots, N$ denote the value of the Wilcoxon statistic for the N possible subsets of the ranks of size n_{2}. The probability that the test statistic, W, is less than or equal to w is

$$
\operatorname{Pr}[W \leq w]=\frac{\text { Number of } W_{i} \leq w}{N}
$$

We seek the values of w that give the appropriate rejection region, \mathcal{R}, so that

$$
\operatorname{Pr}[W \in \mathcal{R}]=\frac{\text { Number of } W_{i} \in \mathcal{R}}{N}=\alpha
$$

It may not be possible to find critical values, and define \mathcal{R}, so that this probability is exactly α as the distribution of W is discrete.

EXAMPLE : Simple Example

Suppose $n_{1}=7$ and $n_{2}=3$. There are

$$
\binom{10}{3}=\frac{10!}{7!3!}=120
$$

subsets of the ranks $\{1,2,3, \ldots, 10\}$ of size 3 . The subsets are listed below, together with the rank sums.

Ranks			W	Ranks			W	Ranks			W	Ranks		W
1	2	3	6		7	8	16	2	7	10	19	4	67	17
1	2	4	7	1	7	9	17	2	8	9	19		68	18
1	2	5	8	1	7	10	18	2	8	10	20	4	6	19
1	2	6	9	1	8	9	18	2	9	10	21	4	610	20
1	2	7	10	1	8	10	19	3	4	5	12	4	7	19
1	2	8	11	1	9	10	20	3	4	6	13		7	20
1	2	9	12	2	3	4		3	4	7	14	4	710	21
1	2	10	13	2	3	5	10	3	4	8	15	4	8	21
1	3	4	8	2	3	6	11	3	4	9	16		810	22
1	3	5	9	2	3	7	12	3	4	10	17	4	910	23
1	3	6	10	2	3	8	13	3	5	6	14	5	67	18
1	3	7	11	2	3	9	14	3	5	7	15	5	68	19
1	3	8	12	2	3	10	15	3	5	8	16	5	69	20
1	3	9	13	2	4	5	11	3	5	9	17	5	610	21
1	3	10	14	2	4	6	12	3	5	10	18	5	7	20
1	4	5	10	2	4	7	13	3	6	7	16		7	21
1	4	6	11	2	4	8	14	3	6	8	17	5	710	22
1	4	7	12	2	4	9	15	3	6	9	18	5	89	22
1	4	8	13	2	4	10	16	3	6	10	19		810	23
1	4	9	14	2	5	6	13	3	7	8	18	5	910	24
1	4	10	15	2	5	7	14	3	7	9	19	6	78	21
1	5	6	12	2	5	8	15	3	7	10	20	6	7	22
1	5	7	13	2	5	9	16	3	8	9	20	6	710	23
1	5	8	14	2	5	10	17	3	8	10	21	6	8	23
1	5		15	2	6	7	15	3	9	10	22	6	810	24
1	5	10	16	2	6	8	16	4	5	6	15	6	910	25
1	6	7	14	2	6	9	17	4	5	7	16	7	8	24
1	6	8	15	2	6	10	18	4	5	8	17	7	810	25
1	6	9	16	2	7	8	17	4	5	9	18	7	910	26
1	6	10	17	2	7	9	18	4	5	10	19	8	910	27

There are 22 possible rank sums, $\{6,7,8, \ldots, 25,26,27\}$; the number of times each is observed is displayed in the table below, with the corresponding probabilities and cumulative probabilities.

W	6	7	8	9	10	11	12	13	14	15	16
Frequency	1	1	2	3	4	5	7	8	9	10	10
Prob.	0.008	0.008	0.017	0.025	0.033	0.042	0.058	0.067	0.075	0.083	0.083
Cumulative Prob.	0.008	0.017	0.033	0.058	0.092	0.133	0.192	0.258	0.333	0.417	0.500
W	17	18	$\mathbf{1 9}$	20	21	22	23	24	25	26	27
Frequency	10	10	$\mathbf{9}$	8	7	5	4	3	2	1	1
Prob.	0.083	0.083	$\mathbf{0 . 0 7 5}$	0.067	0.058	0.042	0.033	0.025	0.017	0.008	0.008
Cumulative Prob.	0.583	0.667	0.742	0.808	0.867	0.908	0.942	0.967	0.983	0.992	1.000

Thus, for example, the probability that $W=19$ is 0.075 , with a frequency of 9 out of 120 . From this table:

$$
\operatorname{Pr}[8 \leq W \leq 25]=0.983-0.017=0.966
$$

implying that the two-sided rejection region for $\alpha=0.05$ is the set $\mathcal{R}=\{6,7,26,27\}$.

Rank Correlation

6 Spearman's Rank Correlation

A measure of association for two samples x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} is the Pearson Product Moment Correlation Coefficient, r, where

$$
r=\frac{S S_{x y}}{\sqrt{S S_{x x} S S_{y y}}}
$$

where

$$
S S_{x x}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \quad S S_{y y}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} \quad S S_{x y}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

This quantity measures the linear association between the X and Y variables.
A measure of the potentially non-linear association between the samples x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} is the Spearman Rank Correlation Coefficient, r_{S}, which computes the correlation between the ranks of the data.

The Spearman Rank Correlation Coefficient is computed as follows:

1. Assign ranks u_{1}, \ldots, u_{n} and v_{1}, \ldots, v_{n} to the data x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} separately by sorting each sample into ascending order and assigning the ranks in order.
2. Compute r_{S} as

$$
r_{S}=\frac{S S_{u v}}{\sqrt{S S_{u u} S S_{v v}}}
$$

where

$$
S S_{u u}=\sum_{i=1}^{n}\left(u_{i}-\bar{u}\right)^{2} \quad S S_{v v}=\sum_{i=1}^{n}\left(v_{i}-\bar{v}\right)^{2} \quad S S_{u v}=\sum_{i=1}^{n}\left(u_{i}-\bar{u}\right)\left(v_{i}-\bar{v}\right)
$$

If there are no ties in the data, then

$$
r_{S}=1-\frac{6 \sum_{i=1}^{n} d_{i}^{2}}{n\left(n^{2}-1\right)}
$$

where

$$
d_{i}=u_{i}-v_{i} \quad i=1, \ldots, n
$$

Tests for r_{S} : If the population correlation is ρ, then we may test the hypothesis

$$
H_{0}: \rho=0
$$

against the hypotheses
(1) $H_{a}: \quad \rho>0$
(2) $H_{a}: \quad: \quad \rho<0$
(3) $H_{a}: \rho \neq 0$
using the table of the null distribution on p 894 of McClave and Sincich. If Spearman ${ }_{\alpha}$ is the α tail quantile of the null distribution, we have the following rejection regions:
(1) : Reject H_{0} if $r_{S}>$ Spearman $_{\alpha}$
(2) : Reject H_{0} if $r_{S}<-$ Spearman $_{\alpha}$
(3) : Reject H_{0} if $\left|r_{S}\right|>$ Spearman $_{\alpha / 2}$

EXAMPLE : Latitude and dizygotic twinning rates

The relationship between the geographical latitude of a country and its dizygotic twinning (DZT) rate is to be investigated. The data are presented and plotted below.
Reference: James, W.H. (1985) Dizygotic twinning, birth weight and latitude, Annals of Human Biology, 12, 5, pp. 441-447.

For these data

$$
r_{S}=\frac{S S_{u v}}{\sqrt{S S_{u u} S S_{v v}}}=\frac{384.5}{\sqrt{567 \times 568.5}}=0.677 \quad r=\frac{S S_{x y}}{\sqrt{S S_{x x} S S_{y y}}}=\frac{118.4}{\sqrt{866.105 \times 38.88}}=0.645
$$

indicating a strong positive association.

