
NON-PARAMETRIC STATISTICS

ONE AND TWO SAMPLE TESTS

Non-parametric tests are normally based on ranks of the data samples, and test hypotheses relating to
quantiles of the probability distribution representing the population from which the data are drawn.
Specifically, tests concern the population median, η, where

Pr[ Observation ≤ η ] =
1
2

The sample median, xMED, is the mid-point of the sorted sample; if the data x1, . . . , xn are sorted into
ascending order, then

xMED =





xm n odd, n = 2m + 1

xm + xm+1

2
n even, n = 2m

1 ONE SAMPLE TEST FOR MEDIAN: THE SIGN TEST

For a single sample of size n, to test the hypothesis η = η0 for some specified value η0 we use the Sign
Test.. The test statistic S depends on the alternative hypothesis, Ha.

(a) For one-sided tests, to test

H0 : η = η0

Ha : η > η0

we define test statistic S by

S = Number of observations greater than η0

whereas to test

H0 : η = η0

Ha : η < η0

we define S by
S = Number of observations less than η0

If H0 is true, it follows that

S ∼ Binomial
(

n,
1
2

)

The p-value is defined by

p = Pr[X ≥ S]

where X ∼ Binomial(n, 1/2). The rejection region for significance level α is defined implicitly by
the rule

Reject H0 if α ≥ p.

The Binomial distribution is tabulated on pp 885-888 of McClave and Sincich.
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(b) For a two-sided test,

H0 : η = η0

Ha : η 6= η0

we define the test statistic by
S = max{S1, S2}

where S1 and S2 are the counts of the number of observations less than, and greater than, η0 re-
spectively. The p-value is defined by

p = 2 Pr[X ≥ S]

where X ∼ Binomial(n, 1/2).

Notes :

1. The only assumption behind the test is that the data are drawn independently from a continuous
distribution.

2. If any data are equal to η0, we discard them before carrying out the test.

3. Large sample approximation. If n is large (say n ≥ 30), and X ∼ Binomial(n, 1/2), then it can be
shown that

X ∼: Normal(np, np(1− p))

Thus for the sign test, where p = 1/2, we can use the test statistic

Z =
S − n

2√
n× 1

2
× 1

2

=
S − n

2
√

n× 1
2

and note that if H0 is true,
Z ∼: Normal(0, 1).

so that the test at α = 0.05 uses the following critical values

Ha : η > η0 then CR = 1.645
Ha : η < η0 then CR = −1.645
Ha : η 6= η0 then CR = ±1.960

4. For the large sample approximation, it is common to make a continuity correction, where we re-
place S by S − 1/2 in the definition of Z

Z =

(
S − 1

2

)
− n

2
√

n× 1
2

Tables of the standard Normal distribution are given on p 894 of McClave and Sincich.
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2 TWO SAMPLE TESTS FOR INDEPENDENT SAMPLES:
THE MANN-WHITNEY-WILCOXON TEST

For a two independent samples of size n1 and n2, to test the hypothesis of equal population medians

η1 = η2

we use the Wilcoxon Rank Sum Test, or an equivalent test, the Mann-Whitney U Test; we refer to this
as the

Mann-Whitney-Wilcoxon (MWW) Test

By convention it is usual to formulate the test statistic in terms of the smaller sample size. Without loss
of generality, we label the samples such that

n1 > n2.

The test is based on the sum of the ranks for the data from sample 2.

EXAMPLE : n1 = 4, n2 = 3 yields the following ranked data

SAMPLE 1 0.31 0.48 1.02 3.11
SAMPLE 2 0.16 0.20 1.97

SAMPLE 2 2 1 1 1 2 1
0.16 0.20 0.31 0.48 1.02 1.97 3.11

RANK 1 2 3 4 5 6 7

Thus the rank sum for sample 1 is
R1 = 3 + 4 + 5 + 7 = 19

and the rank sum for sample 2 is
R2 = 1 + 2 + 6 = 9.

Let η1 and η2 denote the medians from the two distributions from which the samples are drawn. We wish
to test

H0 : η1 = η2

Two related test statistics can be used

• Wilcoxon Rank Sum Statistic
W = R2

• Mann-Whitney U Statistic

U = R2 − n2(n2 + 1)
2

We again consider three alternative hypotheses:

Ha : η1 < η2

Ha : η1 > η2

Ha : η1 = η2

and define the rejection region separately in each case.
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Large Sample Test
If n2 ≥ 10, a large sample test based on the Z statistic

Z =
U − n1n2

2√
n1n2(n1 + n2 + 1)

12

can be used. Under the hypothesis H0 : η1 = η2,

Z ∼: Normal(0, 1)

so that the test at α = 0.05 uses the following critical values

Ha : η1 > η2 then CR = −1.645
Ha : η1 < η2 then CR = 1.645
Ha : η1 6= η2 then CR = ±1.960

Small Sample Test
If n1 < 10, an exact but more complicated test can be used. The test statistic is R2 (the sum of the ranks
for sample 2). The null distribution under the hypothesis H0 : η1 = η2 can be computed, but it is
complicated.

The table on p. 832 of McClave and Sincich gives the critical values (TL and TU ) that determine the
rejection region for different n1 and n2 values up to 10.

• One-sided tests:

Ha : η1 > η2 Rejection Region is R2 ≤ TL

Ha : η1 < η2 Rejection Region is R2 ≥ TU

These are tests at the α = 0.025 significance level.
• Two-sided tests:

Ha : η1 6= η2 Rejection Region is R2 ≤ TL or R2 ≥ TU

This is a test at the α = 0.05 significance level.

Notes :

1. The only assumption is are needed for the test to be valid is that the samples are independently
drawn from two continuous distributions.

2. The sum of the ranks across both samples is

R1 + R2 =
(n1 + n2)(n1 + n2 + 1)

2

3. If there are ties (equal values) in the data, then the rank values are replaced by average rank values.

DATA VALUE 0.16 0.20 0.31 0.31 0.48 1.97 3.11
ACTUAL RANK 1 2 3 3 5 6 7
AVERAGE RANK 1 2 3.5 3.5 5 6 7
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EXAMPLES

EXAMPLE 1: Sign Test: Water Content Example
The following data are measurements of percentage water content of soil samples collected by two ex-
perimenters. We wish to test the hypothesis

H0 : η = 9.0

for each experiment.

Experimenter 1: n = 10 5.5 6.0 6.5 7.6 7.6 7.7 8.0 8.2 9.1 15.1
Experimenter 2: n = 20 5.6 6.1 6.3 6.3 6.5 6.6 7.0 7.5 7.9 8.0

8.0 8.1 8.1 8.2 8.4 8.5 8.7 9.4 14.3 26.0

To perform the test, we need tables of the Binomial distribution with p = 1/2. The individual probabilities
are given by the formula

Pr[X = x] =
(

n

x

)
px(1− p)n−x =

(
n

x

)
1
2n

=
n!

x!(n− x)!
1
2n

x = 0, 1, . . . , n

We test at the α = 0.05 level. For the first experiment, with n = 10:

• For a test against the alternative hypothesis

Ha : η > 9.0

the test statistic is

S = Number of observations greater than 9 ∴ S = 2

and the p-value is

p = Pr[X ≥ 2] = 1− Pr[X < 2] = 1− Pr[X = 0]− Pr[X = 1] = 0.9893

so we do not reject H0 in favour of this Ha.

• For a test against the alternative hypothesis

Ha : η < 9.0

the test statistic is

S = Number of observations less than 9 ∴ S = 8

and the p-value is

p = Pr[X ≥ 8] = Pr[X = 8] + Pr[X = 9] + Pr[X = 10] = 0.0547

so we do not reject H0 in favour of this Ha.

• For a test against the alternative hypothesis

Ha : η 6= 9.0

the test statistic is
S = max{S1, S2} = max{2, 8} = 8

and the p-value is

p = 2Pr[X ≥ 8] = 2(Pr[X = 8] + Pr[X = 9] + Pr[X = 10]) = 0.1094

so we do not reject H0 in favour of this Ha.
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For the second experiment, with n = 20:

• For a test against the alternative hypothesis Ha : η > 9.0, the test statistic is S = 3. The p-value is
therefore

p = Pr[X ≥ 3] = 1− Pr[X < 3] = 1− Pr[X = 0]− Pr[X = 1]− Pr[X = 2] = 0.9998.

so we do not reject H0 in favour of this Ha.

• For a test against the alternative hypothesis Ha : η < 9.0, the test statistic S = 17. The p-value is
therefore

p = Pr[X ≥ 17] = Pr[X = 17] + Pr[X = 18] + Pr[X = 19] + Pr[X = 20] = 0.0013.

so we do reject H0 in favour of this Ha.

• For a test against the alternative hypothesis Ha : η 6= 9.0, the test statistic is S = max{S1, S2} =
max{3, 17} = 17. The p-value is therefore

p = 2Pr[X ≥ 17] = 2(Pr[X = 17] + Pr[X = 18] + Pr[X = 19] + Pr[X = 20]) = 0.0026.

so we do reject H0 in favour of this Ha.

This test can be implemented using SPSS, using the

Analyze → Nonparametric Tests → Binomial

pulldown menus. The test can be carried out by

(a) Selecting the test variable from the variables list
(b) Set the Cut Point equal to η0 = 9.

A two-sided test is carried out at the α = 0.05 level. The SPSS output is presented below for the two
experiments in turn:

Binomial Test

<= 9 8 .80 .50 .109

> 9 2 .20

10 1.00

Group 1

Group 2

Total

% Water content
Category N

Observed

Prop. Test Prop.

Exact Sig.

(2-tailed)

Binomial Test

<= 9 17 .85 .50 .003

> 9 3 .15

20 1.00

Group 1

Group 2

Total

% Water content

Category N

Observed

Prop. Test Prop.

Exact Sig.

(2-tailed)
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EXAMPLE 2: Mann-Whitney-Wilcoxon Test: Low Birthweight Example
The birthweights (in grammes) of babies born to two groups of mothers A and B are displayed below:
Thus n1 = 9, n2 = 8. From this sample (which has ties, so we need to use average ranks), we find that

Group A : n = 9 2164 2600 2184 2080 1820 2496 2184 2080 2184
Group B : n = 8 2576 3224 2704 2912 2444 3120 2912 3848

R1 = 48 R2 = 105

so that the two statistics are

Wilcoxon W = R2 = 105

Mann-Whitney U = R2 − n2(n2 + 1)
2

= 105− 36 = 69

• For the small sample test, from tables on p832 in McClave and Sincich, we find

TL = 51 TU = 93

Thus W > 93, so we

Do not reject H0 against Ha : η1 > η2 as W = R2 > TL

Reject H0 against Ha : η1 < η2 as W = R2 > TU

Reject H0 against Ha : η1 6= η2 as W = R2 > TU

Note that the one-sided tests are carried out at α = 0.025, the two sided test is carried out at
α = 0.05.

• For the large sample test, we find

Z =
U − n1n2

2√
n1n2(n1 + n2 + 1)

12

= 3.175

Thus we

Do not reject H0 against Ha : η1 > η2 as Z > CR = −1.645
Reject H0 against Ha : η1 < η2 as Z > CR = 1.645
Reject H0 against Ha : η1 6= η2 as Z > CR2 = 1.960

All tests are carried out at α = 0.05.

This test can be implemented using SPSS, using the

Analyze → Nonparametric Tests → Two Independent Samples

pulldown menus. Note, however, that SPSS uses different rules for defining the test statistics, although
it yields the same conclusions for a two-sided test.
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EXAMPLE 3: Mann-Whitney-Wilcoxon Test: Treadmill Test Example
The treadmill stress test times (in seconds) of two groups of patients (disease group and healthy controls)
are displayed below:

Disease : n = 10 864 636 638 708 786 600 1320 750 594 750
Healthy : n = 8 1014 684 810 990 840 978 1002 1110

Thus n1 = 10, n2 = 8. From this sample (which has ties, so we need to use average ranks), we find that

R1 = 70 R2 = 101

so that the two statistics are

Wilcoxon W = R2 = 101

Mann-Whitney U = R2 − n2(n2 + 1)
2

= 101− 36 = 65

• For the small sample test, from tables on p832 in McClave and Sincich, we find

TL = 54 TU = 98

Thus W > 98, so we

Do not reject H0 against Ha : η1 > η2 as W = R2 > TL

Reject H0 against Ha : η1 < η2 as W = R2 > TU

Reject H0 against Ha : η1 6= η2 as W = R2 > TU

Again, the one-sided tests are carried out at α = 0.025, the two sided test is carried out at α = 0.05.

• For the large sample test, we find

Z =
U − n1n2

2√
n1n2(n1 + n2 + 1)

12

= 2.221

Thus we

Do not reject H0 against Ha : η1 > η2 as Z > CR = −1.645
Reject H0 against Ha : η1 < η2 as Z > CR = 1.645
Reject H0 against Ha : η1 6= η2 as Z > CR2 = 1.960

All tests are carried out at α = 0.05.
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TWO DEPENDENT SAMPLES AND MULTIPLE INDEPENDENT SAMPLES

3 TWO DEPENDENT SAMPLES: WILCOXON SIGNED RANK TEST

Data collected from the same experimental units are in general dependent. For example, if data are
collected on two occasions (time 1 and time 2, or before and after treatment) from the same n individu-
als, then the resulting data samples (y11, . . . , yn1) and (y12, . . . , yn2) are dependent. Such data are often
referred to as paired. We wish to test whether there is a significant change across the two measurements.

For a parametric test, we typically assume that the within-individual differences

xi = yi1 − yi2 i = 1, . . . , n

are Normally distributed, and test the hypothesis that the mean difference µ is zero

H0 : µ = 0

using a one-sample Z-test (σ known) or T -test (σ unknown), with statistic

z =
x

σ/
√

n
or t =

x

s/
√

n

distributed as Normal(0, 1) or Student(n− 1) respectively.

For a non-parametric test, we can use the Wilcoxon Signed Rank test, which proceeds as follows:

1. Compute the within-individual differences

xi = yi1 − yi2 i = 1, . . . , n

If any xi = 0, then that data point is discarded and the sample size adjusted.

2. Sort the absolute values s1, . . . , sn of x1, x2, . . . , xn into ascending order, and assign ranks 1 up to
n. If there are ties, assign average ranks.

3. Form the two rank sums T+ and T−, where

T+ = Sum of ranks for those xi > 0
T− = Sum of ranks for those xi < 0

The test statistic is a function of these rank sums. Heuristically, if the statistic T+ is large and T− is small,
this implies that the experimental units where yi1 > yi2 have a larger (in magnitude) difference than
those where yi1 < yi2. This indicates an overall decrease between the first and second measurements.
Conversely, if the statistic T− is large and T+ is small, this implies that the experimental units where
yi2 > yi1 have a larger (in magnitude) difference than those where yi2 < yi1. This indicates an overall
increase between the first and second measurements.

We test the null hypothesis

H0 : No change between first and second measurements

against the three alternative hypotheses

(1) Ha : Significant decrease between first and second measurements
(2) Ha : Significant increase between first and second measurements
(3) Ha : Significant change between first and second measurements
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To test H0 vs (1), we perform a one-sided test using the statistic T−; the critical value in the test is denoted
T0, and is determined by the table on p. 839 of McClave and Sincich:

If T− ≤ T0, we reject H0 in favour of Ha (1)

To test H0 vs (2), we perform a one-sided test using the statistic T+; the critical value is T0 and
If T+ ≤ T0, we reject H0 in favour of Ha (2)

To test H0 vs (3), we perform a two-sided test using the statistic T = min{T−, T+}; the critical value is T0

and
If T ≤ T0, we reject H0 in favour of Ha (3)

Notes :
1. The only assumption behind the test is that the difference data xi are drawn independently from a

continuous distribution.

2. Large Sample Test: For n ≥ 25, we can use a large sample version of the test based on T+, and the
Z statistic

Z =
T+ − n(n + 1)

4√
n(n + 1)(2n + 1)

24
If H0 is true, then Z ∼: Normal(0, 1), so that the test at α = 0.05 uses the following critical values

For Ha (1) use CR = 1.645
For Ha (2) use CR = −1.645
For Ha (3) use CR = ±1.960

EXAMPLE 1: Haemodialysis Data
The following data are measurements of the heparin cofactor II (HCII) to plasma protein ratios in a group
of patients at baseline and five months after haemodialysis.
Reference: Toulon, P et al. (1987) Antithrombin III and heparin cofactor II in patients with chronic renal
failure undergoing regular hemodialysis, Thrombosis and Haemostasis, 3;57(3): pp263-8.

Patient Before After
yi1 yi2 xi si Rank Ave. Rank

1 2.11 2.15 -0.04 0.04 3 3.5
2 1.85 2.11 -0.26 0.26 10 10.0
3 1.82 1.93 -0.11 0.11 8 8.0
4 1.75 1.83 -0.08 0.08 6 6.0
5 1.54 1.90 -0.36 0.36 11 11.0
6 1.52 1.56 -0.04 0.04 3 3.5
7 1.49 1.44 0.05 0.05 5 5.0
8 1.44 1.43 0.01 0.01 1 1.5
9 1.38 1.28 0.10 0.10 7 7.0
10 1.30 1.30 0.00 0.00 - - OMIT
11 1.20 1.21 -0.01 0.01 1 1.5
12 1.19 1.30 -0.11 0.11 9 9.0

T+ = 13.5
T− = 52.5

From the table on p 839, for n = 12−1 = 11, we find that the α = 0.025/0.05 (one/two-sided) significance
level critical value is T0 = 11. Thus using T+, we cannot reject either of the null hypotheses (2) and (3),
as T+ > T0 . Note that Z = −1.734, so if the approximation was valid, we would be able to reject (2) at
α = 0.05.
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4 THREE OR MORE INDEPENDENT SAMPLES:
THE KRUSKAL-WALLIS AND FRIEDMAN TESTS

We now seek non-parametric tests that can be used for multiple independent samples, such as those
found in the Completely Randomized Design (CRD) and Randomized Block Design (RBD) described in
the ANOVA section. The non-parametric equivalents of the Fisher-F tests for these two designs are

• The Kruskal-Wallis H test for a Completely Randomized Design
• Friedman’s test for a Randomized Block Design

4.1 Kruskal-Wallis Test

In a CRD, we have k independent groups, corresponding to k different treatments, with sample sizes
n1, . . . , nk. Let n = n1 + · · ·+ nk. To compute the test statistic, H , we

1. Pool the data, sort them into ascending order, and assign ranks. If there are ties in the data, then
average ranks are used.

2. For j = 1, . . . , k, compute the rank sum Rj

Rj = Sum of ranks for data from sample j.

To test the hypothesis

H0 : No difference between the population distributions of the k groups
Ha : At least two population distributions different

the test statistic is

H =
12

n(n + 1)

k∑

j=1

R2
j

nj
− 3(n + 1)

If H0 is true, then for large n,
H ∼: Chisquared(k − 1).

Notes :

1. The test assumes that the k samples are independently drawn from continuous populations.

2. For the approximation to be valid, there should be at least five observations in each sample, and
the number of ties should be small.

EXAMPLE 2: Mucociliary efficiency data
The data are measures of mucociliary efficiency from the rate of removal of dust in normal subjects
(Group 1), subjects with obstructive airway disease (Group 2), and subjects with asbestosis (Group 3).

Reference: Myles Hollander, M and Douglas A. Wolfe (1973), Nonparametric statistical inference, New York:
John Wiley & Sons. pp115-120.

Group 1 1 1 1 1 2 2 2 2 3 3 3 3 3
y 2.9 3.0 2.5 2.6 3.2 3.8 2.7 4.0 2.4 2.8 3.4 3.7 2.2 2.0

Rank 8 9 4 5 10 13 6 14 3 7 11 12 2 1

Hence R1 = 36, R2 = 36 and R3 = 33, and the test statistic H = 0.7714. To complete the test, we compare
with the α = 0.05 quantile of the Chisquared(k − 1) = Chisquared(2) distribution. We have

Chisq0.05(2) = 5.99 > H ∴ No evidence to reject H0

and a p-value of p = 0.680.
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4.2 Friedman Test

In a RBD, we have k treatment groups, and a blocking factor. For example, we might have k repeated
measurements on the same b experimental units, and n = bk observations in total. To compute the test
statistic, Fr, we proceed as follows.

1. Within each block separately, sort the k data values into ascending order, and assign ranks. If
there are ties in the data, then average ranks are used.

2. For j = 1, . . . , k, compute the rank sum Rj

Rj = Sum of ranks for data from treatment j.

To test the hypothesis

H0 : No difference between the population distributions of the k treatment groups
Ha : At least two population distributions different

the test statistic is

Fr =
12

bk(k + 1)

k∑

j=1

R2
j − 3b(k + 1)

If H0 is true, then for large n,
Fr ∼: Chisq(k − 1)

Notes :

1. The test assumes that the data are drawn independently from continuous populations, with ran-
dom assignment of treatments within blocks.

2. For the approximation to be valid, it is recommended that b or k is at least five, and the number of
ties should be small.

EXAMPLE 3: Skin potential under hypnosis
A study was conducted to investigate whether hypnosis has the same effect on skin potential for four
different emotions. Eight subjects were asked to display fear, joy, sadness and calmness under hypnosis,
and the resulting skin potential (measured in millivolts) was recorded for each emotion. Thus in this
experiment, b = 8 and k = 4.

Fear Joy Sadness Calmness
Subject y Rank y Rank y Rank y Rank

1 23.1 4 22.7 3 22.5 1 22.6 2
2 57.6 4 53.2 2 53.7 3 53.1 1
3 10.5 3 9.7 2 10.8 4 8.3 1
4 23.6 4 19.6 3 21.1 2 21.6 1
5 11.9 1 13.8 4 13.7 3 13.3 2
6 54.6 4 47.1 3 39.2 2 37.0 1
7 21.0 4 13.6 1 13.7 2 14.8 3
8 20.3 3 23.6 4 16.3 2 14.8 1

Rank Sum 27 20 19 14

Thus the within-treatment rank sums are R1 = 27, R2 = 20, R3 = 19 and R4 = 14 and thus Fr = 6.45. To
complete the test, we compare with the α = 0.05 quantile of the

Chisquared(k − 1) = Chisquared(3)

distribution. We have

Chisq0.05(3) = 7.81 > Fr ∴ No evidence to reject H0

and a p-value of p = 0.092.
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5 THE ROLE OF RANDOMIZATION/PERMUTATION TESTS

Randomization or Permutation procedures are useful for computing exact null distributions for non-
parametric test statistics when sample sizes are small.

Suppose that two data samples x1 . . . , xn1 and y1 . . . , yn2 (where n1 ≥ n2) have been obtained, and we
wish to carry out a comparison of the two populations from which the samples are drawn. The Wilcoxon
test statistic, W , is the sum of the ranks for the second sample. The permutation test proceeds as follows:

1. Let n = n1 + n2. Assuming that there are no ties, the pooled and ranked samples will have ranks

1 2 3 . . . n

2. The test statistic is W = R2, the rank sum for sample two items. For the observed data, W will be
the sum of n2 of the ranks given in the list above.

3. If the null hypothesis

H0 : No difference between population 1 and population2

were true, then there should be no pattern in the group labels when sorted into ascending order;
the sorted data would give rise a random assortment of group 1 and group 2 labels.

4. To obtain the exact distribution of W under H0 (for the assessment of statistical significance), we
could compute W for all possible permutations of the group labels, and then form the probability
distribution of the values of W . We call this the permutation null distribution.

5. But W is a rank sum, so we can compute the permutation null distribution simply by tabulating all
possible subsets of size n2 of the set of ranks {1, 2, 3, . . . , n}.

6. There are (
n

n2

)
=

n!
n1! n2!

= N

say possible subsets of size n2; for n = 6 and n2 = 2, the number of subsets of size n2 is
(

8
2

)
=

8!
6! 2!

= 28

However, the number of subsets increases dramatically as n increases; for n1 = n2 = 10, so that
n = 20, the number of subsets of size n2 is

(
20
10

)
=

20!
10! 10!

= 184756

7. The exact rejection region and p-value are computed from the permutation null distribution. Let
Wi, i = 1, . . . , N denote the value of the Wilcoxon statistic for the N possible subsets of the ranks of
size n2. The probability that the test statistic, W , is less than or equal to w is

Pr[W ≤ w] =
Number of Wi ≤ w

N

We seek the values of w that give the appropriate rejection region, R, so that

Pr[W ∈ R] =
Number of Wi ∈ R

N
= α

It may not be possible to find critical values, and define R, so that this probability is exactly α as
the distribution of W is discrete.
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EXAMPLE : Simple Example
Suppose n1 = 7 and n2 = 3. There are

(
10
3

)
=

10!
7! 3!

= 120

subsets of the ranks {1, 2, 3, . . . , 10} of size 3. The subsets are listed below, together with the rank sums.

Ranks W Ranks W Ranks W Ranks W
1 2 3 6 1 7 8 16 2 7 10 19 4 6 7 17
1 2 4 7 1 7 9 17 2 8 9 19 4 6 8 18
1 2 5 8 1 7 10 18 2 8 10 20 4 6 9 19
1 2 6 9 1 8 9 18 2 9 10 21 4 6 10 20
1 2 7 10 1 8 10 19 3 4 5 12 4 7 8 19
1 2 8 11 1 9 10 20 3 4 6 13 4 7 9 20
1 2 9 12 2 3 4 9 3 4 7 14 4 7 10 21
1 2 10 13 2 3 5 10 3 4 8 15 4 8 9 21
1 3 4 8 2 3 6 11 3 4 9 16 4 8 10 22
1 3 5 9 2 3 7 12 3 4 10 17 4 9 10 23
1 3 6 10 2 3 8 13 3 5 6 14 5 6 7 18
1 3 7 11 2 3 9 14 3 5 7 15 5 6 8 19
1 3 8 12 2 3 10 15 3 5 8 16 5 6 9 20
1 3 9 13 2 4 5 11 3 5 9 17 5 6 10 21
1 3 10 14 2 4 6 12 3 5 10 18 5 7 8 20
1 4 5 10 2 4 7 13 3 6 7 16 5 7 9 21
1 4 6 11 2 4 8 14 3 6 8 17 5 7 10 22
1 4 7 12 2 4 9 15 3 6 9 18 5 8 9 22
1 4 8 13 2 4 10 16 3 6 10 19 5 8 10 23
1 4 9 14 2 5 6 13 3 7 8 18 5 9 10 24
1 4 10 15 2 5 7 14 3 7 9 19 6 7 8 21
1 5 6 12 2 5 8 15 3 7 10 20 6 7 9 22
1 5 7 13 2 5 9 16 3 8 9 20 6 7 10 23
1 5 8 14 2 5 10 17 3 8 10 21 6 8 9 23
1 5 9 15 2 6 7 15 3 9 10 22 6 8 10 24
1 5 10 16 2 6 8 16 4 5 6 15 6 9 10 25
1 6 7 14 2 6 9 17 4 5 7 16 7 8 9 24
1 6 8 15 2 6 10 18 4 5 8 17 7 8 10 25
1 6 9 16 2 7 8 17 4 5 9 18 7 9 10 26
1 6 10 17 2 7 9 18 4 5 10 19 8 9 10 27

There are 22 possible rank sums, {6, 7, 8, . . . , 25, 26, 27}; the number of times each is observed is displayed
in the table below, with the corresponding probabilities and cumulative probabilities.

W 6 7 8 9 10 11 12 13 14 15 16
Frequency 1 1 2 3 4 5 7 8 9 10 10
Prob. 0.008 0.008 0.017 0.025 0.033 0.042 0.058 0.067 0.075 0.083 0.083
Cumulative Prob. 0.008 0.017 0.033 0.058 0.092 0.133 0.192 0.258 0.333 0.417 0.500
W 17 18 19 20 21 22 23 24 25 26 27
Frequency 10 10 9 8 7 5 4 3 2 1 1
Prob. 0.083 0.083 0.075 0.067 0.058 0.042 0.033 0.025 0.017 0.008 0.008
Cumulative Prob. 0.583 0.667 0.742 0.808 0.867 0.908 0.942 0.967 0.983 0.992 1.000

Thus, for example, the probability that W = 19 is 0.075, with a frequency of 9 out of 120. From this table:

Pr[8 ≤ W ≤ 25] = 0.983− 0.017 = 0.966

implying that the two-sided rejection region for α = 0.05 is the set R = {6, 7, 26, 27}.
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RANK CORRELATION

6 SPEARMAN’S RANK CORRELATION

A measure of association for two samples x1, . . . , xn and y1, . . . , yn is the Pearson Product Moment Cor-
relation Coefficient, r, where

r =
SSxy√

SSxx SSyy

where

SSxx =
n∑

i=1

(xi − x)2 SSyy =
n∑

i=1

(yi − y)2 SSxy =
n∑

i=1

(xi − x)(yi − y)

This quantity measures the linear association between the X and Y variables.

A measure of the potentially non-linear association between the samples x1, . . . , xn and y1, . . . , yn is the
Spearman Rank Correlation Coefficient, rS , which computes the correlation between the ranks of the
data.

The Spearman Rank Correlation Coefficient is computed as follows:

1. Assign ranks u1, . . . , un and v1, . . . , vn to the data x1, . . . , xn and y1, . . . , yn separately by sorting
each sample into ascending order and assigning the ranks in order.

2. Compute rS as

rS =
SSuv√

SSuu SSvv

where

SSuu =
n∑

i=1

(ui − u)2 SSvv =
n∑

i=1

(vi − v)2 SSuv =
n∑

i=1

(ui − u)(vi − v)

If there are no ties in the data, then

rS = 1−
6

n∑

i=1

d2
i

n(n2 − 1)
where

di = ui − vi i = 1, . . . , n

Tests for rS : If the population correlation is ρ, then we may test the hypothesis

H0 : ρ = 0

against the hypotheses

(1) Ha : ρ > 0
(2) Ha : ρ < 0
(3) Ha : ρ 6= 0

using the table of the null distribution on p 894 of McClave and Sincich. If Spearmanα is the α tail
quantile of the null distribution, we have the following rejection regions:

(1) : Reject H0 if rS > Spearmanα

(2) : Reject H0 if rS < −Spearmanα

(3) : Reject H0 if |rS | > Spearmanα/2
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EXAMPLE : Latitude and dizygotic twinning rates
The relationship between the geographical latitude of a country and its dizygotic twinning (DZT) rate is
to be investigated. The data are presented and plotted below.

Reference: James, W.H. (1985) Dizygotic twinning, birth weight and latitude, Annals of Human Biology,
12, 5, pp. 441-447.

Country Latitude Rank DZT Rate Rank
x u y v

Portugal 40 1.5 6.5 2.0
Greece 40 1.5 8.8 13.0
Spain 41 3.0 5.9 1.0
Bulgaria 42 4.0 7.0 3.0
Italy 44 5.0 8.6 11.5
France 47 6.5 7.1 4.0
Switzerland 47 6.5 8.1 7.5
Austria 48 8.0 7.5 6.0
Belgium 51 9.5 7.3 5.0
FR Germany 51 9.5 8.2 9.0
Holland 52 11.5 8.1 7.5
GDR 52 11.5 9.1 16.0
England & Wales 53 13.5 8.9 14.5
Ireland 53 13.5 11.0 18.0
Scotland 56 15.5 8.9 14.5
Denmark 56 15.5 9.6 17.0
Sweden 60 17.0 8.6 11.5
Norway 61 18.0 8.3 10.0
Finland 62 19.0 12.1 19.0
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For these data

rS =
SSuv√

SSuu SSvv
=

384.5√
567× 568.5

= 0.677 r =
SSxy√

SSxx SSyy

=
118.4√

866.105× 38.88
= 0.645

indicating a strong positive association.
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