CHI-SQUARED TESTS FOR CATEGORICAL DATA

In a **multinomial** experiment, the independent experimental units are classified to one of k categories determined by the levels of a discrete factor. Let $n_1, n_2, ..., n_k$ be the counts of the numbers of experimental units in the k categories, where $n_1 + n_2 + \cdots + n_k = n$.

The probability that an experimental unit is classified to category *i* is p_i , for i = 1, ..., k, so that

$$p_1 + p_2 + \dots + p_k = 1$$

• The **one-way** classification table can be displayed as follows:

Category	1	2	• • •	k
Count	n_1	n_2	• • •	n_k
Probability	p_1	p_2	• • •	p_k

We can test a hypothesis H_0 that fully specifies p_1, \ldots, p_k , for example

$$H_0: p_1 = p_1^{(0)}, p_2 = p_2^{(0)}, \dots, p_k = p_k^{(0)}$$

so that, for k = 3, we might have

$$H_0: p_1 = p_2 = p_3 = 1/3$$
 or $H_0: p_1 = 1/2, p_2 = p_3 = 1/4.$

We use the test statistic

$$X^{2} = \sum_{i=1}^{k} \frac{\left(n_{i} - np_{i}^{(0)}\right)^{2}}{np_{i}^{(0)}} = \sum_{i=1}^{k} \frac{(\text{Observed Count in Cell } i - \text{Expected Count in Cell } i)^{2}}{\text{Expected Count in Cell } i}$$

We sometimes write $\hat{n}_i = np_i^{(0)}$. If H_0 is true, $X^2 \sim \text{Chi-squared}(k-1)$.

• The **two-way** classification table can also be constructed to represent the cross-classification for two discrete factors *A* and *B* with *r* and *c* levels respectively.

		Factor B				
		1	2	• • •	c	
	1	n_{11}	n_{12}		n_{1c}	
or A	2	n_{21}	n_{22}		n_{2c}	
Factu	:	:	:		:	
	r	n_{r1}	n_{r2}		n_{rc}	

To test the hypothesis

 H_0 : Factor A and Factor B levels are assigned independently

we use the same test statistic that can be rewritten

$$X^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(n_{ij} - \hat{n}_{ij})^{2}}{\hat{n}_{ij}}$$

where

$$\widehat{n}_{ij} = \frac{n_{i.}n_{.j}}{n}$$
 $n_{i.} = \sum_{j=1}^{c} n_{ij}$ $n_{.j} = \sum_{i=1}^{r} n_{ij}.$

The terms $n_{i.}$ and $n_{.j}$ are the row and column totals for row *i* and column *j* respectively. If H_0 is true

$$X^2 \sim \text{Chi-squared}((r-1)(c-1))$$

EXAMPLE 1: DNA Sequence Data

The counts of the numbers of nucleotides (A,C,G,T) in the DNA sequence of the cancer-related gene BRCA 2 are presented in the table below.

Category	1	2	3	4	Total
Nucleotide	A	C	G	Т	
Count	38514	24631	25685	38249	127079

so that k = 4. To test the hypothesis

$$H_0$$
: $p_1 = p_2 = p_3 = p_4 = 1/4$

We use the one-way table chi-squared test: here

$$\widehat{n}_i = np_i^{(0)} = \frac{127079}{4} = 31769.75$$

so the test statistic is

$$X^{2} = \frac{(38514 - 31769.75)^{2}}{31769.75} + \frac{(24631 - 31769.75)^{2}}{31769.75} + \frac{(25685 - 31769.75)^{2}}{31769.75} + \frac{(38249 - 31769.75)^{2}}{31769.75}$$

= 5522.597

We compare this with the Chi-squared $(k-1) \equiv$ Chi-squared(3) distribution. From McClave and Sincich, p. 898,

$$Chisq_{0.05}(3) = 7.815 < X^2$$

so H_0 is rejected.

EXAMPLE 2: Eye and Hair Colour Data

The table below contains counts of the number of people in a study with a combination of eye and hair colour.

		Hair				
		Black	Brunette	Red	Blonde	$n_{i.}$
	Brown	68	119	26	7	220
S	Blue	20	84	17	94	215
ye	Hazel	15	54	14	10	93
щ	Green	5	29	14	16	64
	$n_{.j}$	108	286	71	127	592

so r = c = 4. To test the hypothesis

 H_0 : Eye and Hair colour are assigned independently

we use the X^2 statistic

$$X^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(n_{ij} - \hat{n}_{ij})^{2}}{\hat{n}_{ij}}$$

Here, for example, for i = 2 and j = 3

$$\widehat{n}_{23} = \frac{n_{2.} \times n_{.3}}{n} = \frac{215 \times 71}{592} = 25.785.$$

In fact, on complete calculation, we find that

$$X^2 = 138.2898.$$

We compare this with the Chi-squared $((r-1)(c-1)) \equiv$ Chi-squared (9) distribution. From McClave and Sincich, p. 898,

$${\rm Chisq}_{0.05}(9) = 16.919 < X^2$$

so H_0 is rejected

Chi-Squared test for the nucleotide count data

Use

Analyze → Nonparametric Tests → Chi-Square

pulldown menus.

For the test of First null hypothesis $H_0: p_1 = p_2 = p_3 = p_4 = 1/4$ Nucleotide Expected N Observed N Residual А 38514 31769.8 6744.3 С -7138.8 24631 31769.8 G -6084.8 25685 31769.8 Т 38249 31769.8 6479.3 Total 127079 Chi-squared Statistic = 5522.597 **Test Statistics** Nucleotide Chi-5522.597 Square(a) p-value < 0.001 df 3 Asymp. Sig. .000

a 0 cells (.0%) have expected frequencies less than 5. The minimum expected cell frequency is 31769.8.

a 0 cells (.0%) have expected frequencies less than 5. The minimum expected cell frequency is 25415.8.

Chi-Squared test for the Hair and Eye colour count data

Use

```
Analyze \rightarrow Descriptive Statistics \rightarrow Crosstabs
```

pulldown menus.

For the test of

H₀: Hair and Eye colour are assigned independently

Eye Colour * Hair Colour Crosstabulation

Count

		Hair Colour				
		Black	Brown	Red	Blond	Total
Eye Colour	Brown	68	119	26	7	220
	Blue	20	84	17	94	215
	Hazel	15	54	14	10	93
	Green	5	29	14	16	64
Total		108	286	71	127	592

Chi-Square Tests

