Explaining Interaction

February 4, 2008

For example: a = 4, b = 3.

- ► Factor A: levels 1, 2, ..., a
- ► Factor B: levels 1, 2, ..., b

Most complicated model: Main Effects plus Interaction

$$A + B + A.B$$

that is, we have

- a baseline mean: β_0
- an effect for each level of Factor A: $\beta_i^{(A)}$
- ▶ an effect for each level of Factor B: $\beta_i^{(B)}$
- an interaction that modifies the effect of changing levels of Factor A at each level of Factor B: γ^(AB)_{ii}

In SPSS, the baseline group is the one where Factor A has level *a* and Factor B has level *b*, but this choice is **arbitrary**; changing this assumption should have no effect on the results we obtain.

Thus we adopt the following modelling strategy:

- Establish a baseline
- ► Look for changes from baseline introduced by Factor A
- ► Look for changes from baseline introduced by Factor B
- Look for changes from baseline introduced by Factor A and Factor B additively, so that the effect of changing the level of Factor A is identical in each level of Factor B, and vice versa).
- Look for changes from baseline introduced by Factor A and Factor B additively with interaction, so that the effect of changing the level of Factor A is different in each level of Factor B, and vice versa).

```
Two-way table: 4 \times 3
```

		1	2	3
Factor A	1			
	2			
	3			
	4			

Null Model : Baseline Mean Only

Null Model: cell entries are means for data for each treatment.

		1	2	3
Factor A	1	β_0	β_0	β_0
	2	β_0	β_0	β_0
	3	β_0	β_0	β_0
	4	β_0	β_0	β_0

Effect of Factor A only

Main Effect Only: A

		1	2	3
ctor A	1	$\beta_0 + \beta_1^{(A)}$	$\beta_0 + \beta_1^{(A)}$	$\beta_0 + \beta_1^{(A)}$
	2	$\beta_0 + \beta_2^{(A)}$	$\beta_0 + \beta_2^{(A)}$	$\beta_0 + \beta_2^{(A)}$
	3	$\beta_0 + \beta_3^{(A)}$	$\beta_0 + \beta_3^{(A)}$	$\beta_0 + \beta_3^{(A)}$
Fa	4	β_0	β ₀	β_0

Effect of Factor B only

Main Effect Only: B

1 2 3 $+ \beta_{1}^{(B)}$ $+ \beta_{2}^{(B)}$ 1 β_0 β_0 β_0 $+ \beta_{2}^{(B)}$ $+ \beta_{1}^{(B)}$ 2 β_0 β_0 β_0 Factor A $+ \beta_{1}^{(B)}$ $+ \beta_{2}^{(B)}$ 3 β_0 β_0 β_0 $+ \beta_{1}^{(B)}$ $+ \beta_{2}^{(B)}$ 4 β_0 β_0 β_0

Effect of Factor A plus Effect of Factor B

Main Effects Only: A + B

		1	2	3
Factor A	1	$\beta_0 + \beta_1^{(A)} + \beta_1^{(B)}$	$\beta_0 + \beta_1^{(A)} + \beta_2^{(B)}$	$\beta_0 + \beta_1^{(A)}$
	2	$\beta_0 + \beta_2^{(A)} + \beta_1^{(B)}$	$\beta_0 + \beta_2^{(A)} + \beta_2^{(B)}$	$\beta_0 + \beta_2^{(A)}$
	3	$\beta_0 + \beta_3^{(A)} + \beta_1^{(B)}$	$\beta_0 + \beta_3^{(A)} + \beta_2^{(B)}$	$\beta_0 + \beta_3^{(A)}$
	4	$\beta_0 + \beta_1^{(B)}$	$\beta_0 + \beta_2^{(B)}$	β ₀

Main effects plus Interaction between A and B

Main Effects Plus Interaction: A + B + A.B

		1	2	3
ctor A	1	$\beta_0 + \beta_1^{(A)} + \beta_1^{(B)} + \gamma_{11}^{(AB)}$	$\beta_0 + \beta_1^{(A)} + \beta_2^{(B)} + \gamma_{12}^{(AB)}$	$\beta_0 + \beta_1^{(A)}$
	2	$\beta_0 + \beta_2^{(A)} + \beta_1^{(B)} + \gamma_{21}^{(AB)}$	$\beta_0 + \beta_2^{(A)} + \beta_2^{(B)} + \gamma_{22}^{(AB)}$	$\beta_0 + \beta_2^{(A)}$
	3	$\beta_0 + \beta_3^{(A)} + \beta_1^{(B)} + \gamma_{31}^{(AB)}$	$\beta_0 + \beta_3^{(A)} + \beta_2^{(B)} + \gamma_{32}^{(AB)}$	$\beta_0 + \beta_3^{(A)}$
Бa	4	$\beta_0 + \beta_1^{(B)}$	$\beta_0 + \beta_2^{(B)}$	β ₀

Q. Why are the following models

- ► A.B
- \blacktriangleright A + A.B
- ► B + A.B

not considered ?

A. Because they make specific and perhaps **unrealistic** assumptions about the data, and they imply that the levels of the factors are **not arbitrarily labelled**.

Q. Why are the following models

- ► A.B
- \blacktriangleright A + A.B
- ► B + A.B

not considered ?

A. Because they make specific and perhaps **unrealistic** assumptions about the data, and they imply that the levels of the factors are **not arbitrarily labelled**.

SPSS will not fit such models, although it appears that it does !

Recall the definition of interaction:

- Variation in the effect of changing levels of one factor at the different levels of the other factor.
- ► For example, the effect on the response mean of moving from level 1 to level 2 for Factor B is different at different levels of Factor A.

Consider the model

A.B

this model implies that all parameters apart from the **baseline** and the **interaction** parameters are zero.

Interaction between A and B only

Interaction only: A.B

		1	2	3
Factor A	1	$eta_0 + 0 + 0 + \gamma_{11}^{(AB)}$	$eta_0 + 0 + 0 + \gamma_{12}^{(AB)}$	$\beta_0 + 0$
	2	$eta_0 + 0 + 0 + \gamma_{21}^{(AB)}$	$\beta_0 + 0 + 0 + \gamma_{22}^{(AB)}$	$\beta_0 + 0$
	3	$eta_0 + 0 + 0 + \gamma_{31}^{(AB)}$	$\beta_0 + 0 + 0 + \gamma_{32}^{(AB)}$	$\beta_0 + 0$
	4	$\beta_0 + 0$	$\beta_0 + 0$	β_0

In this set-up,

- ► for Factor A, Level 4: the effect of moving from Level 3 to Level 2 of factor B is zero
- For Factor A, Level 3: the effect of moving from Level 3 to Level 2 of factor B is γ^(AB)₃₂.

Therefore, there is a **fundamental difference** between the way that we regard the levels of Factor A.

Main Effect of A plus Interaction between A and B only

Interaction only: A + A.B

		1	2	3
ctor A	1	$\beta_0 + \beta_1^{(A)} + 0 + \gamma_{11}^{(AB)}$	$\beta_0 + \beta_1^{(A)} + 0 + \gamma_{12}^{(AB)}$	$\beta_0 + \beta_1^{(A)}$
	2	$\beta_0 + \beta_2^{(A)} + 0 + \gamma_{21}^{(AB)}$	$\beta_0 + \beta_2^{(A)} + 0 + \gamma_{22}^{(AB)}$	$\beta_0 + \beta_2^{(A)}$
	3	$\beta_0 + \beta_3^{(A)} + 0 + \gamma_{31}^{(AB)}$	$\beta_0 + \beta_3^{(A)} + 0 + \gamma_{32}^{(AB)}$	$\beta_0 + \beta_3^{(A)}$
Ъ	4	$\beta_0 + 0$	$\beta_0 + 0$	β ₀

In this set-up,

- ▶ for Factor A, Level 4: the effect of moving from Level 3 to Level 2 of factor B is zero
- ► for Factor A, Level 3: the effect of moving from Level 3 to Level 2 of factor B is \(\gamma_{32}^{(AB)}\).

Therefore, there is a **fundamental difference** between the way that we regard the levels of Factor A. If we rearrange the labels of the levels of Factor A

we may get a different result.

Therefore, although it is possible **in general** to fit such models, it is no longer possible to talk of the effect of "Factor A".

How does SPSS Handle Such Models ?

It is possible to fit the models

A + A.B B + A.B A.B

in SPSS. For example, for the model A+A.B

- ► Analyze → General Linear Model → Univariate
- ► Select the Dependent Variable and Fixed Factor(s)
- ► Click *Model* to bring up the *Univariate: Model* dialog box.
- Select Factor A as a Main Effect using the Build pull-down list, click the selection arrow,
- highlight Factor A and Factor B simultaneously, and select Interaction from the *Build* pull-down list, and click the selection arrow.
- ► Click *Continue*, and then *OK*.

How does SPSS Handle Such Models ?

This produces the usual ANOVA table, with terms including

Factor A

and

Factor A * Factor B

However, in fact the model

A + B + A.B

has been fitted !

- ► The results are just reported differently
- ▶ The terms B and A.B are reported together !

Example: Batteries Data

A - Material B - Temperature Model A + B + A.B

Dependent Variable: Battery Life					
Source	Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	59154.000	8	7394.250	11.103	0.000
Intercept	398792.250	1	398792.250	598.829	0.000
material	10633.167	2	5316.583	7.983	0.002
temp	39083.167	2	19541.583	29.344	0.000
material * temp	9437.667	4	2359.417	3.543	0.019
Error	17980.750	27	665.954		
Total	475927.000	36			
Corrected Total	77134.750	35			
R Squared = .767 (Adjusted R Squared = .698)					

 $SS = SST_A + \frac{SST_B}{SS} + \frac{SSI_{AB}}{SSE} + SSE$

Example: Batteries Data

A - Material B - Temperature Model A + A.B

Dependent Variable: Battery Life						
Source	Sum of Squares	df	Mean Square	F	Sig.	
Corrected Model	59154.000	8	7394.250	11.103	0.000	
Intercept	398792.250	1	398792.250	598.829	0.000	
material	10633.167	2	5316.583	7.983	0.002	
material * temp	48520.833	6	8086.806	12.143	0.000	
Error	17980.750	27	665.954			
Total	475927.000	36				
Corrected Total	77134.750	35				
R Squared = $.767$ (Adjusted R Squared = $.698$)						

 $SS = SST_A + \frac{SSI_{B:AB}}{SS} + SSE$

where

$$SSI_{B:AB} = SST_B + SSI_{AB}$$