Explaining Interaction

February 4, 2008

For example: $a=4, b=3$.

- Factor A: levels $1,2, \ldots$, a
- Factor B: levels $1,2, \ldots, b$

Most complicated model: Main Effects plus Interaction

$$
A+B+A \cdot B
$$

that is, we have

- a baseline mean: β_{0}
- an effect for each level of Factor A: $\beta_{i}^{(A)}$
- an effect for each level of Factor $\mathbf{B}: \beta_{j}^{(B)}$
- an interaction that modifies the effect of changing levels of Factor A at each level of Factor $\mathrm{B}: \gamma_{i j}^{(A B)}$

In SPSS, the baseline group is the one where Factor A has level a and Factor B has level b, but this choice is arbitrary; changing this assumption should have no effect on the results we obtain.

Thus we adopt the following modelling strategy:

- Establish a baseline
- Look for changes from baseline introduced by Factor A
- Look for changes from baseline introduced by Factor B
- Look for changes from baseline introduced by Factor A and Factor B additively, so that the effect of changing the level of Factor A is identical in each level of Factor B , and vice versa).
- Look for changes from baseline introduced by Factor A and Factor B additively with interaction, so that the effect of changing the level of Factor A is different in each level of Factor B , and vice versa).

Two-way table: 4×3

Factor B

Null Model: Baseline Mean Only

Null Model: cell entries are means for data for each treatment.

Factor B

Effect of Factor A only

Main Effect Only: A

Factor B

Effect of Factor B only

Main Effect Only: B

Factor B

$\begin{aligned} & \text { r } \\ & \stackrel{1}{U} \\ & \stackrel{U}{U} \\ & \dot{\sim} \end{aligned}$			1		2	3
	1	β_{0}	$+\beta_{1}^{(B)}$	β_{0}	$+\beta_{2}^{(B)}$	β_{0}
	2	β_{0}	$+\beta_{1}^{(B)}$	β_{0}	$+\beta_{2}^{(B)}$	β_{0}
	3	β_{0}	$+\beta_{1}^{(B)}$	β_{0}	$+\beta_{2}^{(B)}$	β_{0}
	4	β_{0}	$+\beta_{1}^{(B)}$	β_{0}	$+\beta_{2}^{(B)}$	β_{0}

Effect of Factor A plus Effect of Factor B

Main Effects Only: A + B

Factor B

Main effects plus Interaction between A and B

Main Effects Plus Interaction: $A+B+A \cdot B$

Factor B

		1	2	3
	1	$\beta_{0}+\beta_{1}^{(A)}+\beta_{1}^{(B)}+\gamma_{11}^{(A B)}$	$\beta_{0}+\beta_{1}^{(A)}+\beta_{2}^{(B)}+\gamma_{12}^{(A B)}$	$\beta_{0}+\beta_{1}^{(A)}$
	2	$\beta_{0}+\beta_{2}^{(A)}+\beta_{1}^{(B)}+\gamma_{21}^{(A B)}$	$\beta_{0}+\beta_{2}^{(A)}+\beta_{2}^{(B)}+\gamma_{22}^{(A B)}$	$\beta_{0}+\beta_{2}^{(A)}$
	3	$\beta_{0}+\beta_{3}^{(A)}+\beta_{1}^{(B)}+\gamma_{31}^{(A B)}$	$\beta_{0}+\beta_{3}^{(A)}+\beta_{2}^{(B)}+\gamma_{32}^{(A B)}$	$\beta_{0}+\beta_{3}^{(A)}$
	4	$\beta_{0} \quad+\beta_{1}^{(B)}$	$\beta_{0} \quad+\beta_{2}^{(B)}$	β_{0}

Q. Why are the following models

- A.B
- $A+A \cdot B$
- $B+A \cdot B$
not considered ?
A. Because they make specific and perhaps unrealistic assumptions about the data, and they imply that the levels of the factors are not arbitrarily labelled.
Q. Why are the following models
- A.B
- $A+A \cdot B$
- $B+A \cdot B$
not considered ?
A. Because they make specific and perhaps unrealistic assumptions about the data, and they imply that the levels of the factors are not arbitrarily labelled.

SPSS will not fit such models, although it appears that it does !

Recall the definition of interaction:

- Variation in the effect of changing levels of one factor at the different levels of the other factor.
- For example, the effect on the response mean of moving from level 1 to level 2 for Factor B is different at different levels of Factor A.

Consider the model

> A.B
this model implies that all parameters apart from the baseline and the interaction parameters are zero.

Interaction between A and B only

Interaction only: A.B
Factor B

	1	2	3
1	$\beta_{0}+0+0+\gamma_{11}^{(A B)}$	$\beta_{0}+0+0+\gamma_{12}^{(A B)}$	$\beta_{0}+0$
2	$\beta_{0}+0+0+\gamma_{21}^{(A B)}$	$\beta_{0}+0+0+\gamma_{22}^{(A B)}$	$\beta_{0}+0$
3	$\beta_{0}+0+0+\gamma_{31}^{(A B)}$	$\beta_{0}+0+0+\gamma_{32}^{(A B)}$	$\beta_{0}+0$
4	$\beta_{0} \quad+0$	$\beta_{0} \quad+0$	β_{0}

In this set-up,

- for Factor A, Level 4: the effect of moving from Level 3 to Level 2 of factor B is zero
- for Factor A, Level 3: the effect of moving from Level 3 to Level 2 of factor \mathbf{B} is $\gamma_{32}^{(A B)}$.
Therefore, there is a fundamental difference between the way that we regard the levels of Factor A.

Main Effect of A plus Interaction between A and B only

Interaction only: A $+\mathrm{A} . \mathrm{B}$

Factor B

		1	2	3
	1	$\beta_{0}+\beta_{1}^{(A)}+0+\gamma_{11}^{(A B)}$	$\beta_{0}+\beta_{1}^{(A)}+0+\gamma_{12}^{(A B)}$	$\beta_{0}+\beta_{1}^{(A)}$
	2	$\beta_{0}+\beta_{2}^{(A)}+0+\gamma_{21}^{(A B)}$	$\beta_{0}+\beta_{2}^{(A)}+0+\gamma_{22}^{(A B)}$	$\beta_{0}+\beta_{2}^{(A)}$
	3	$\beta_{0}+\beta_{3}^{(A)}+0+\gamma_{31}^{(A B)}$	$\beta_{0}+\beta_{3}^{(A)}+0+\gamma_{32}^{(A B)}$	$\beta_{0}+\beta_{3}^{(A)}$
	4	$\beta_{0} \quad+0$	$\beta_{0} \quad+0$	β_{0}

In this set-up,

- for Factor A, Level 4: the effect of moving from Level 3 to Level 2 of factor B is zero
- for Factor A, Level 3: the effect of moving from Level 3 to Level 2 of factor \mathbf{B} is $\gamma_{32}^{(A B)}$.

Therefore, there is a fundamental difference between the way that we regard the levels of Factor A. If we rearrange the labels of the levels of Factor A
we may get a different result.

Therefore, although it is possible in general to fit such models, it is no longer possible to talk of the effect of "Factor A".

How does SPSS Handle Such Models ?

It is possible to fit the models

$$
A+A \cdot B \quad B+A \cdot B \quad A \cdot B
$$

in SPSS. For example, for the model $A+A . B$

- Analyze \longrightarrow General Linear Model \longrightarrow Univariate
- Select the Dependent Variable and Fixed Factor(s)
- Click Model to bring up the Univariate: Model dialog box.
- Select Factor A as a Main Effect using the Build pull-down list, click the selection arrow,
- highlight Factor A and Factor B simultaneously, and select Interaction from the Build pull-down list, and click the selection arrow.
- Click Continue, and then OK.

How does SPSS Handle Such Models?

This produces the usual ANOVA table, with terms including

Factor A

and

> Factor A * Factor B

However, in fact the model

$$
A+B+A \cdot B
$$

has been fitted!

- The results are just reported differently
- The terms B and A.B are reported together!

Example: Batteries Data

A - Material
B - Temperature
Model A + B + A.B

Dependent Variable: Battery Life							
Source	Sum of Squares	df	Mean Square	F	Sig.		
Corrected Model	59154.000	8	7394.250	11.103	0.000		
Intercept	398792.250	1	398792.250	598.829	0.000		
material	10633.167	2	5316.583	7.983	0.002		
temp	39083.167	2	19541.583	29.344	0.000		
material * temp	9437.667	4	2359.417	3.543	0.019		
Error	17980.750	27	665.954				
Total	475927.000	36					
Corrected Total	77134.750	35					
R Squared $=.767$ (Adjusted R Squared $=.698)$							

$$
\mathrm{SS}=\mathrm{SST}_{A}+\mathrm{SST}_{B}+\mathrm{SSI}_{A B}+\mathrm{SSE}
$$

Example: Batteries Data

A - Material
B - Temperature
Model A + A.B

Dependent Variable: Battery Life						
Source	Sum of Squares	df	Mean Square	F	Sig.	
Corrected Model	59154.000	8	7394.250	11.103	0.000	
Intercept	398792.250	1	398792.250	598.829	0.000	
material	10633.167	2	5316.583	7.983	0.002	
material * temp	48520.833	6	8086.806	12.143	0.000	
Error	17980.750	27	665.954			
Total	475927.000	36				
Corrected Total	77134.750	35				
R Squared $=.767$ (Adjusted R Squared $=.698)$						

$$
\mathrm{SS}=\mathrm{SST}_{A}+\mathrm{SSI}_{B: A B}+\mathrm{SSE}
$$

where

$$
\mathrm{SSI}_{B: A B}=\mathrm{SST}_{B}+\mathrm{SSI}_{A B}
$$

