Randomized Block Designs and the ANOVA F-TEST

Consider a randomized block design (RBD) with k treatments and b blocks. Assume that each block has k experimental units, and that one unit is assigned to each treatment. Let $x_{i j}$ be the measured response for the experimental unit from block j in treatment i and

- sample mean for treatment i

$$
\bar{x}_{i}=\frac{1}{b} \sum_{j=1}^{b} x_{i j} \quad i=1, \ldots, k
$$

- sample mean for block j

$$
\overline{x_{j}^{(B)}}=\frac{1}{k} \sum_{i=1}^{k} x_{i j} \quad j=1, \ldots, b
$$

- overall sample mean

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{b} x_{i j}
$$

- Sum of Squares for Treatments (SST)

$$
\mathrm{SST}=\sum_{i=1}^{k} b\left(\bar{x}_{i}-\bar{x}\right)^{2}
$$

- Sum of Squares for Blocks (SSB)

$$
\mathrm{SSB}=\sum_{j=1}^{b} k\left(\overline{x_{j}^{(\mathrm{B})}}-\bar{x}\right)^{2}
$$

- Overall Sum of Squares (SS)

$$
\mathrm{SS}=\sum_{i=1}^{k} \sum_{j=1}^{b}\left(x_{i j}-\bar{x}\right)^{2}
$$

The following decomposition holds

$$
\mathrm{SS}=\mathrm{SST}+\mathrm{SSB}+\mathrm{SSE} \quad \therefore \quad \mathrm{SSE}=\mathrm{SS}-\mathrm{SST}-\mathrm{SSB}
$$

For testing

$$
\begin{aligned}
& H_{0}: \mu_{1}=\cdots=\mu_{k} \\
& H_{a}:
\end{aligned}
$$

in an RBD, the test statistic is

$$
F=\frac{\mathrm{MST}}{\mathrm{MSE}}
$$

where

$$
\mathrm{MST}=\frac{\mathrm{SST}}{k-1} \quad \mathrm{MSE}=\frac{\mathrm{SSE}}{n-b-k+1}
$$

If H_{0} is true, then $F \sim \operatorname{Fisher}-\mathrm{F}(k-1, n-b-k+1)$, and the rejection region for the test with significance level α is

$$
F>F_{\alpha}(k-1, n-b-k+1)
$$

where $F_{\alpha}\left(\nu_{1}, \nu_{2}\right)$ is the $1-\alpha$ percentage point of the Fisher-F distribution with ν_{1} and ν_{2} degrees of freedom (see pages 899-905 of McClave and Sincich 10th Ed)

EXAMPLE

Data: Measurements were made on the amount of sulphur (in parts per million) in soil samples using four different solvents. The soil samples were collected from five different geographical locations in Florida, USA, and represented different soil types.

The response variable sulphur level. The single factor is the solvent and there are $k=4$ factor levels:

1. Calcium Chloride $\left(\mathrm{CaCl}_{2}\right)$
2. Ammonium Acetate $\left(\mathrm{NH}_{4} \mathrm{OAc}\right)$
3. Mono-Calcium Phosphate $\left(\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{P} \mathrm{O}_{4}\right)_{3}\right)$
4. Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$

The soil types determine the $b=5$ blocks

1. Troup, Jackson Co. (Paleudults soil)
2. Lakeland, Walton Co. (Quartzipsamments soil)
3. Leon, Duval Co. (Haplaquads soil)
4. Chipley, Jackson Co. (Quartzipsamments soil)
5. Norfolk, Alachua Co. (Paleudults soil)

The data observed in the study were as follows:

	Block				
Treatment	Troup	Lakeland	Leon	Chipley	Norfolk
CaCl_{2}	5.07	3.31	2.54	2.34	4.71
$\mathrm{NH}_{4} \mathrm{OAc}$	4.43	2.74	2.09	2.07	5.29
$\mathrm{Ca}_{\mathrm{a}}\left(\mathrm{H}_{2} \mathrm{P} \mathrm{O}_{4}\right)_{3}$	7.09	2.32	1.09	4.38	5.70
$\mathrm{H}_{2} \mathrm{O}$	4.48	2.35	2.70	3.85	4.98

Using SPSS, the following ANOVA table was obtained; see the related SPSS screens at www.math.mcgill.ca/~dstephens/204/Handouts/Math204-SPSS-RBDANOVA-Screens.pdf

Tests of Between-Subjects Effects
Dependent Variable: Sulphur content (ppm)

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	$35.586(a)$	7	5.084	0.327	.003
tntercept	270.333	1	270.333	336.460	.000
solvent	1.621	3	.540	.673	.585
soil	33.965	4	8.491	10.568	.001
Error	9.642	12	.803		
Fotal	315.561	20			
Corrected Total	45.228	19			

a R Squared $=.787$ (Adjusted R Squared $=.662$)

This table contains a much information not needed for the ANOVA F-test; the rows headed

- Corrected Model (row 1)
- Intercept (row 2)
- Total (row 6)
can be ignored. The remaining rows are the standard ANOVA table for the randomized block design. As expected, there is a significant difference between blocks (row $4, F=10.568$, p-value $=0.001$), but no significant difference between treatments (row 3, $F=0.673, p$-value $=0.585$).

