MATH 204 - SOLUTIONS 5

1. (a) Fitted values:

Smoking Status				Total
	Non-smoker	Occasional	Regular	
Cough	339.137	357.096	44.767	741
No cough	963.863	1014.904	127.233	2106
Total	1303	1372	172	2847

(b) For the Chi-squared statistic

$$
X^{2}=\sum_{i=1}^{2} \sum_{j=1}^{3} \frac{\left(n_{i j}-\widehat{n}_{i j}\right)^{2}}{\widehat{n}_{i j}}=64.247
$$

(c) Here $(r-1)(c-1)=2$, and thus we compare with the Chisquared(2) distribution: for $\alpha=0.05$, from Tables in McClave and Sincich

$$
\text { Chisq }_{0.05}(2)=5.99<X^{2}
$$

and thus we reject H_{0} at $\alpha=0.05$; in fact the p-value is miniscule $\left(1.12 \times 10^{-14}\right)$. Hence we conclude that there is evidence for association.
(d) Using the $\widehat{n}_{i j}$ from above

$$
L R=2 \sum_{i=1}^{2} \sum_{j=1}^{3} n_{i j} \log \left(n_{i j} / \widehat{n}_{i j}\right)=61.013
$$

and thus we again reject H_{0} at $\alpha=0.05$
2. Using the formulae given

$$
\log \widehat{\psi}=\log \left(\frac{90 \times 307}{255 \times 84}\right)=0.690 \quad \text { s.e. }(\log \widehat{\psi})=\sqrt{\frac{1}{90}+\frac{1}{255}+\frac{1}{84}+\frac{1}{307}}=0.180
$$

and

$$
Z=\frac{\log \widehat{\psi}}{\text { s.e. }(\log \widehat{\psi})}=\frac{0.690}{0.179}=3.837
$$

The two-sided test at the $\alpha=0.05$ significance level has critical values ± 1.96, so as $Z>1.96$, we reject the null hypothesis of no association, which here corresponds to

$$
H_{0}: \psi=1 \quad \text { or equivalently } \quad H_{0}: \log \psi=0
$$

Note: The odds on an event E, where $P(E)=p$, are given by

$$
\frac{p}{1-p} .
$$

Here, ψ is the odds-ratio measuring the change in odds on having Hodgkin's disease in the two groups, that is, if p_{1} and p_{2} are the probability of having the disease in the Tonsillectomy and No Tonsillectomy groups respectively, then

$$
\psi=\frac{p_{1} /\left(1-p_{1}\right)}{p_{2} /\left(1-p_{2}\right)}
$$

In this example

$$
\widehat{\psi}=\left(\frac{90 \times 307}{255 \times 84}\right)=1.994
$$

so the odds on having Hodgkin's disease in the Tonsillectomy group are almost twice as high as for the No Tonsillectomy group. Hence it appears that there is a positive association between the Tonsillectomy factor and the disease.
3. The data and ranks are summarized below;

Group	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2
Obs.	0.73	0.80	0.83	1.04	1.38	1.45	1.46	1.64	1.89	1.91	0.74	0.88	0.9	1.15	1.21
Rank	1	3	4	7	10	11	12	13	14	15	2	5	6	8	9

Thus the Wilcoxon statistic is

$$
W=R_{2}=2+5+6+8+9=30
$$

and the Mann-Whitney statistic is

$$
U=R_{2}-\frac{n_{2}}{2}\left(n_{2}+1\right)=30-\frac{5 \times 6}{2}=15 .
$$

The Z statistic is thus

$$
Z=\frac{U-\frac{n_{1} n_{2}}{2}}{\sqrt{\frac{n_{1} n_{2}\left(n_{1}+n_{2}+1\right)}{12}}}=\frac{15-\frac{10 \times 5}{2}}{\sqrt{\frac{10 \times 5 \times 16}{12}}}=-1.225
$$

Comparing this with the standard normal distribution, the critical values of the two-sided test at the $\alpha=0.05$ significance level are ± 1.96. Thus there is no evidence to reject $\boldsymbol{H}_{\mathbf{0}}$ of equal population medians.

Note : An exact test using the Mann-Whitney-Wilcoxon table on page 832 of McClave and Sincich can be carried out. Using the test statistic $W=R_{2}$, we look up in the table for $n_{1}=10$ and $n_{2}=5$; the table gives

$$
T_{L}=24 \quad T_{U}=56
$$

As

$$
T_{L}<W<T_{U}
$$

we have again no evidence to reject $\boldsymbol{H}_{\mathbf{0}}$ in either a one-sided or two-sided test.

