MATH 204 - ASSIGNMENT 3: SOLUTIONS

1. For each centre separately, we test the hypothesis

$$
H_{0}: p_{1}=p_{2}=p_{3}=p_{4}=\frac{1}{4}
$$

against the alternative hypothesis that H_{0} is not true. In the formula

$$
X^{2}=\sum_{i=1}^{k} \frac{\left(n_{i}-n p_{i}^{(0)}\right)^{2}}{n p_{i}^{(0)}}=\sum_{i=1}^{k} \frac{(\text { Observed Count in Cell } i-\text { Expected Count in Cell } i)^{2}}{\text { Expected Count in Cell } i}
$$

with $k=4$, the fitted values are therefore $n p_{i}^{(0)}=24 / 4=6$. The boundary of the rejection region is, from tables, $C_{R}=$ Chisq $_{0.05}(k-1)=$ Chisq $_{0.05}(3)=7.81$.

	Arm					
Centre	1	2	3	4	X^{2}	Reject H_{0}
1	6	8	5	5	1.00	No
2	6	9	3	6	3.00	No
3	7	10	1	6	7.00	No

Thus, despite the apparent imbalances in the counts, there is insufficient evidence to reject H_{0}.

6 Marks

In this case the expected counts are all equal to six, so the usual guideline that the expected counts need to be at least five is met.

2 Marks
2. (a) For this hypothesis, you need to use the Wilcoxon signed ranks test for paired data, as the T_{4} and T_{8} measurements are made on the same experimental subjects. Here $n=20$, and we are looking for a higher T_{8} count than T_{4} count, so the hypotheses of interest are
H_{0} : No change between first and second measurements
H_{a} : Significant increase between first and second measurements
Thus

- a large rank sum for the negative ranks T_{-}, or
- a small rank sum for the positive ranks T_{+},
for the differences

$$
x_{i}=T_{4 i}-T_{8 i}
$$

implies that we should reject H_{0}. By direct calculation (or using SPSS) we have that

$$
T_{+}=148 \quad T_{-}=62
$$

(the signs are reversed compared to SPSS as SPSS computes the difference $x_{i}=T_{8 i}-T_{4 i}$).
From Tables, for $n=20$, we see that for the required one-tailed test, the $\alpha=0.05$ critical value is 60 . That is, if $T_{+} \leq 60$, we would reject H_{0} in favour of H_{1}. But here $T_{+}=148>60$, so we do not reject H_{0}. This is confirmed by the asymptotic test performed by SPSS (see SPSS output). In the output, the p-value for the two-tailed test is quoted; to get the p-value for the one-tailed test, we simply divide by two to get $0.108 / 2=0.0502$, so again the test does not reject H_{0}. However, this test is for the alternative hypothesis

$$
H_{a} \text { : Significant decrease between first and second measurements }
$$

which is not the one of interest. To get the p-value for the H_{a} of interest, we need to compute the p-value as

$$
p=1-0.108 / 2=0.948
$$

(a) For this hypothesis, you need to use the Mann-Whitney-Wilcoxons test for independent samples, as the T_{4} / T_{8} ratios are computed independently on different experimental subjects. Here $n=20$, and we are looking for a different T_{4} / T_{8} ratio, so the hypotheses of interest are

$$
\begin{array}{ccc}
H_{0} & : & \eta_{1}=\eta_{2} \\
H_{1} & : & \eta_{1} \neq \eta_{2}
\end{array}
$$

Thus we need the rank sum R_{2} to satisfy $R_{2} \leq T_{L}$ or $R_{2} \geq T_{U}$. The table does not give T_{L} and T_{U} for $n=20$, but the SPSS output (see SPSS output) does give the exact p-value.

By direct calculation on the T_{4} / T_{8} ratios, or from SPSS, we see that $R_{2}=312$, and that $Z=$ -2.651 . In the output, the asymptotic (Normal approximation) p-value is quoted as 0.008 , and the exact p-value is given as 0.007 . Hence H_{0} is rejected in favour of H_{1}.

The output also indicates the direction of the change; the rank sum for Group 2 is higher (508) than that for Group 1 (312), indicating that the T_{4} / T_{8} ratio is higher in Group 2.

Wilcoxon Signed Ranks Test

Ranks

		N	Mean Rank	Sum of Ranks
Group 1 T8 - Group 1 T4	Negative Ranks	12^{a}	12.33	148.00
	Positive Ranks	8^{b}	7.75	62.00
	Ties	0^{c}		
	Total	20		

a. Group 1 T8 < Group 1 T4
b. Group 1 T8 > Group 1 T4
c. Group 1 T8 = Group 1 T4

Test Statistics ${ }^{\text {b }}$

	Group 1 T8 - Group 1 T4
Z	$-1.605^{\text {a }}$
Asymp. Sig. (2-tailed)	.108

a. Based on positive ranks.
b. Wilcoxon Signed Ranks Test

Mann-Whitney Test
Ranks

	Group	N	Mean Rank	Sum of Ranks
T4/T8 Ratio	Hodgkin's	20	15.60	312.00
	Non-Hodgkin's	20	25.40	508.00
	Total	40		

Test Statistics $^{\text {b }}$

	T4/T8 Ratio
Mann-Whitney U	102.000
Wilcoxon W	312.000
Z	-2.651
Asymp. Sig. (2-tailed)	.008
Exact Sig. [2*(1-tailed Sig.)]	$.007^{\text {a }}$
a. Not corrected for ties.	
b. Grouping Variable: Group	

