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CHAPTER 1

PROBABILITY THEORY

1.1 INTRODUCTION AND MOTIVATION

The random variation associated with “measurement” procedures in a scientific analysis requires
a framework in which the uncertainty and variability that are inherent in the procedure can
be handled. The key goal of Probability and Statistical modelling is to establish a mathematical
framework within which random variation (due, for example, to experimental error or natural
variation) can be quantified so that systematic variation (arising due to potentially important
biological differences) can be studied.

Broadly, the “Scientific Process” involves several different stages:

THEORETICAL MODELLING −→MATHEMATICAL
↓ /PROBABILISTIC MODELLING

PREDICTION
↓

EXPERIMENTATION/OBSERVATION
↓

VALIDATION

Mathematical/Probabilistic modelling facilitates PREDICTION; Statistical Analysis provides
the means of validation of predicted behaviour.

To explain the variation in observed data, we need to introduce the concept of a probability
distribution. Essentially we need to be able to model, or specify, or compute the “chance” of
observing the data that we collect or expect to collect. This will then allow us to assess how likely
the data were to occur by chance alone, that is, how “surprising” the observed data are in light of
an assumed theoretical model.

For example, consider two nucleotide sequences of the same length that we wish to assess for
similarity:

Sequence 1 ATAGTAGATACGCACCGAGGA

Sequence 2 ATCTTAGATAGGCACTGAGGA

1
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How can we assess sequence similarity formally ? The number of discordant positions is 4, but
how informative is that summary measure ? Perhaps we need to assess the chance, for example,
that a point mutation A → C occurs (as in the discordant position 3).in unit evolutionary time.
Perhaps the chance of observing a sub-sequence

ATCTTA

rather than

ATAGTA

(in positions 1-6) in important. Is the hidden (or latent) structure in the sequence, corresponding
to whether the sequence originates from a coding region or otherwise, important ? Can we even
infer the hidden structure in light of the data we have observed ?

These questions can only really be answered when we have an understanding of randomness
and variation. The framework that we will use to pose and answer such questions formally is given
to us by probability theory.

1.2 BASIC PROBABILITY CONCEPTS

1.2.1 EXPERIMENTS AND EVENTS

An experiment is any procedure

(a) with a well-defined set of possible outcomes - the sample space, S.
(b) whose actual outcome is not known in advance.

A sample outcome, s, is precisely one of the possible outcomes of the experiment.

The sample space, S, is the entire set of possible outcomes.

SIMPLE EXAMPLES:

(a) Coin tossing: S = {H,T}.
(b) Dice : S = {1, 2, 3, 4, 5, 6}.
(c) Proportions: S = {x : 0 ≤ x ≤ 1}
(d) Time measurement: S = {x : x > 0} = R+

(e) Temperature measurement: S = {x : a ≤ x ≤ b} ⊆ R

In biological sequence analysis, the experiment may involve the observation of a nucleotide or
protein sequence, so that the sample space S may comprise all sequences (of bases/amino acids)
up to a given length, and a sample outcome would be a particular observed sequence.

There are two basic types of experiment, namely

COUNTING

and

MEASUREMENT
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- we shall see that these two types lead to two distinct ways of specifying probability distributions.

The collection of sample outcomes is a set (a collection of items) , so we write

s ∈ S

if s is a member of the set S.

Definition 1.2.1 An event E is a set of the possible outcomes of the experiment, that is E is a
subset of S, E ⊆ S, E occurs if the actual outcome is in this set.

NOTE: the sets S and E can be either be written as a list of items, for example,

E = {s1, s2, ..., sn, ...}

which may a finite or infinite list, or can only be represented by a continuum of outcomes, for
example

E = {x : 0.6 < x ≤ 2.3}

Events are manipulated using set theory notation; if E, F are two events, E,F ⊆ S,

Union E ∪ F “E or F or both occurs”
Intersection E ∩ F “E and F occur”

Complement E
′

“E does not occur”

We can interpret the events E ∪ F , E ∩ F , and E
′

in terms of collections of sample outcomes, and
use Venn Diagrams to represent these concepts.

Figure 1.1: Venn Diagram
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Another representation for this two event situation is given by the following table:

E E′ Union

F (E ∩ F ) (E′ ∩ F ) F

F ′ (E ∩ F ′) (E′ ∩ F ′) F ′

Union E E′

so that, taking unions in the columns

(E ∩ F ) ∪ (E ∩ F ′) = E

(E′ ∩ F ) ∪ (E′ ∩ F ′) = E′

and in the rows

(E ∩ F ) ∪ (E′ ∩ F ) = F

(E ∩ F ′) ∪ (E′ ∩ F ′) = F ′

Special cases of events:

THE IMPOSSIBLE EVENT Ø the empty set,the collection of sample outcomes
with zero elements

THE CERTAIN EVENT Ω the collection of all sample outcomes

Definition 1.2.2 Events E and F are mutually exclusive if

E ∩ F = Ø

that is, the collections of sample outcomes E and F have no element in common.

Mutually exclusive events are very important in probability and statistics, as they allow complicated
events to be simplified in such a way as to allow straightforward probability calculations to be made.

Definition 1.2.3 Events E1, ...,Ek form a partition of event F ⊆ S if

(a) Ei ∩ Ej = Ø for all i and j (b)
k⋃
i=1

Ei = E1 ∪E2 ∪ ... ∪ Ek = F .

We are interested in mutually exclusive events and partitions because when we carry out prob-
ability calculations we will essentially be counting or enumerating sample outcomes; to ease this
counting operation, it is desirable to deal with collections of outcomes that are completely distinct
or disjoint.



1.2. BASIC PROBABILITY CONCEPTS 5

Figure 1.2: Partition of Ω

Figure 1.3: Partition of F ⊂ Ω
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1.3 THE RULES OF PROBABILITY

The probability function P (.) is a set function that assigns weight to collections of sample outcomes.
We can consider assigning probability to an event by adopting

CLASSICAL APPROACH consider equally likely outcomes

FREQUENTIST APPROACH consider long-run relative frequencies

SUBJECTIVE APPROACH consider your personal degree of belief

It is legitimate to use any justification where appropriate or plausible. In fact, it is sufficient to
require that the probability function P (.) must satisfy the following mathematical properties. For
any events E and F in sample space S,

(1) 0 ≤ P (E) ≤ 1

(2) P (Ω) = 1

(3) If E ∩ F = Ø, then P (E ∪ F ) = P (E) + P (F )

From the axioms, we can immediately prove the following results:

P (E
′

) = 1− P (E), P (Ø) = 0

If E1, ...,Ek are events such that Ei ∩ Ej = Ø for all i, j, then

P

(
k⋃

i=1

Ei

)
= P (E1) + P (E2) + ... + P (Ek).

If E ∩ F = Ø, then P (E ∪ F ) = P (E) + P (F )− P (E ∩ F )

For the 2× 2 table above, we have the following:

E E′ Sum

F P (E ∩ F ) P (E′ ∩ F ) P (F )

F ′ P (E ∩ F ′) P (E′ ∩ F ′) P (F ′)

Sum P (E) P (E′)

so that, summing in the columns

P (E ∩ F ) + P (E ∩ F ′) = P (E)

P (E′ ∩ F ) + P (E′ ∩ F ′) = P (E′)

and summing in the rows

P (E ∩ F ) + P (E′ ∩ F ) = P (F )

P (E ∩ F ′) + P (E′ ∩ F ′) = P (F ′)
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EXAMPLE CALCULATION Examination Pass Rates

The examination performance of students in a year of eight hundred students is to be studied:
a student either chooses an essay paper or a multiple choice test. The pass figures and rates are
given in the table below:

PASS FAIL PASS RATE

FEMALE 200 200 0.5
MALE 240 160 0.6

The result of this study is clear: the pass rate for MALES is higher than that for FEMALES.

Further investigation revealed a more complex result: for the essay paper, the results were as
follows;

PASS FAIL PASS RATE

FEMALE 120 180 0.4
MALE 30 70 0.3

so for the essay paper, the pass rate for FEMALES is higher than that for MALES.

For the multiple choice test, the results were as follows;

PASS FAIL PASS RATE

FEMALE 80 20 0.8
MALE 210 90 0.7

so for the multiple choice paper, the pass rate for FEMALES is higher than that for MALES.

Hence we conclude that FEMALES have a higher pass rate on the essay paper, and FEMALES
have a higher pass rate on the multiple choice test, but MALES have a higher pass rate overall.

This apparent contradiction can be resolved by careful use of the probability definitions. First
introduce notation; let E be the event that the student chooses an essay, F be the event that the
student is female, and G be the event that the student passes the selected paper.
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1.4 CONDITIONAL PROBABILITY AND INDEPENDENCE

Definition 1.4.1 For two events E and F with P (F ) > 0, the conditional probability that E
occurs, given that F occurs, is written P (E|F ), and is defined by

P (E|F ) =
P (E ∩ F )

P (F )
so that P (E ∩ F ) = P (E|F )P (F )

It is easy to show that this new probability operator P ( . | . ) satisfies the probability axioms.

The probability of the intersection of events E1, ..., Ek is given by the chain rule

P (E1 ∩ ... ∩Ek) = P (E1)P (E2|E1)P (E3|E1 ∩ E2)...P (Ek|E1 ∩ E2 ∩ ... ∩Ek−1)

Definition 1.4.2 Events F and F are independent if

P (E|F ) = P (E) so that P (E ∩ F ) = P (E)P (F )

and so if E1, ..., Ek are independent events, then

P (E1 ∩ ... ∩ Ek) =
k∏

i=1

P (Ei) = P (E1)...P (Ek)

A simple way to think about joint and conditional probability is via a probability tree:

Figure 1.4: Probability Tree for the Theorem of Total Probability

The chain rule construction is particularly important in biological sequence analysis; consider
one of the sequences from page 1

ATAGTAGATACGCACCGAGGA
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If we wish to assess the probability of seeing such a sequence, we might let

P (A) = pA P (C) = pC P (G) = pG P (T ) = pT

for some suitable probabilities satisfying

0 ≤ pA, pC , pG, pT ≤ 1 pA + pC + pG + pT = 1

and assume independence so that

P (ATAGTAGATACGCACCGAGGA) = pA × pT × pA × ...× pG × pA

which simplifies to

P (ATAGTAGATACGCACCGAGGA) = p8Ap
4
Cp

6
Gp

3
T

However, the assumption of independence may not be correct; perhaps knowledge about a base
being in one position influences the probability of the base in the next position. In this case, we
would have to write (in general)

P (ATAGTAGATACGCACCGAGGA) = P (A)× P (T |A)× P (A|AT )× P (G|ATA)× ...
...× P (A|ATAGTAGATACGCACCGAGG)

Finally, our estimate (or specified value) for pA, pC , pG, pT may change due to the hidden structure
of the underlying genomic segment; that is, whether the segment is from a codon or otherwise; for
example

P (A|Exon) = p
(E)
A

P (A|Intron) = p
(I)
A

where it is not necessarily the case that pA = p
(E)
A = p

(I)
A .

[In the exam results problem, what we really have specified are conditional probabilities. From the
pooled table, we have

P (G|F ) = 0.5 P (G|F ′

) = 0.6,

from the essay results table, we have

P (G|E ∩ F ) = 0.4 P (G|E ∩ F
′

) = 0.3,

and from the multiple choice table, we have

P (G|E ′ ∩ F ) = 0.8 P (G|E ′ ∩ F
′

) = 0.7

and so interpretation is more complicated than originally thought.]
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1.5 THE TOTAL PROBABILITY RESULT

If events E1, ..., Ek form a partition of S, and event F ⊆ S, then

P (F ) =
k∑

i=1

P (F |Ei)P (Ei)

The results follows because we have by assumption that

F =
k⋃

i=1

(Ei ∩ F ) =⇒ P (F ) =
k∑

i=1

P (Ei ∩ F ) =
k∑

i=1

P (F |Ei)P (Ei)

by probability axiom (3), as the collection E1 ∩ F, ...,Ek ∩ F are mutually exclusive.

1.6 BAYES RULE

For events E and F such that P (E), P (F ) > 0,

P (E|F ) =
P (F |E)P (E)

P (F )

If events E1, ..., Ek form a partition of S, with P (Ei) > 0 for all i, then

P (Ei|F ) =
P (F |Ei)P (Ei)

P (F )
where P (F ) =

k∑

j=1

P (F |Ej)P (Ej)

Note that this result follows immediately from the conditional probability definition that

P (E ∩ F ) = P (E|F )P (F ) and P (E ∩ F ) = P (F |E)P (E)

and hence equating the right hand sides of the two equations we have

P (E|F )P (F ) = P (F |E)P (E)

and hence the result follows. Note also that in the second part of the theorem,

P (Ei|F ) =
P (F |Ei)P (Ei)

P (F )
=

P (F |Ei)
P (F )

P (Ei)

so the probabilities P (Ei) are re-scaled to P (Ei|F ) by conditioning on F . Note that

k∑

i=1

P (Ei|F ) = 1

This theorem is very important because, in general,

P (E|F ) = P (F |E)

and it is crucial to condition on the correct event in a conditional probability calculation.
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Example 1.6.1 Lie-detector test.

In an attempt to achieve a criminal conviction, a lie-detector test is used to determine the guilt of
a suspect. Let G be the event that the suspect is guilty, and let T be the event that the suspect
fails the test.

The test is regarded as a good way of determining guilt, because laboratory testing indicate that
the detection rates are high; for example it is known that

P [ Suspect Fails Test | Suspect is Guilty ] = P (T |G) = 0.95 = 1− α, say

P [ Suspect Passes Test | Suspect is Not Guilty ] = P (T ′|G′) = 0.99 = β, say.

Suppose that the suspect fails the test. What can be concluded ? The probability of real interest
is P (G|T ); we do not have this probability but can compute it using Bayes Theorem.

For example, we have

P (G|T ) = P (T |G)P (G)

P (T )

where P (G) is not yet specified, but P (T ) can be computed using the Theorem of Total
probability, that is,

P (T ) = P (T |G)P (G) + P (T |G′

)P (G
′

)

so that

P (G|T ) = P (T |G)P (G)

P (T |G)P (G) + P (T |G′)P (G′)

Clearly, the probability P (G), the probability that the suspect is guilty before the test is carried
out, plays a crucial role. Suppose, that P (G) = p = 0.005, so that only 1 in 200 suspects taking
the test are guilty. Then

P (T ) = 0.95× 0.005 + 0.01× 0.995 = 0.0147

so that

P (G|T ) = 0.95× 0.005

0.95× 0.005 + 0.01× 0.995
= 0.323

which is still relatively small. So, as a result of the lie-detector test being failed, the probability of
guilt of the suspect has increased from 0.005 to 0.323.

More extreme examples can be found by altering the values of α, β and p.
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CHAPTER 2

PROBABILITY DISTRIBUTIONS

2.1 MOTIVATION

The probability definitions, rules, and theorems given previously are all framed in terms of events
in a sample space. For example, for an experiment with possible sample outcomes denoted by the
sample space S, an event E was defined as any collection of sample outcomes, that is, any subset
of the set S.

EXPERIMENT −→ SAMPLE OUTCOMES −→ EVENTS −→ PROBABILITIES

S = {s1, s2, ...} −→ E ⊆ S −→ P (E)

In this framework, it is necessary to consider each experiment with its associated sample space
separately - the nature of sample space S is typically different for different experiments.

EXAMPLE 1: Count the number of days in February which have zero precipitation.
SAMPLE SPACE S = {0, 1, 2, ...,28}.Let Ei = “i days have zero precipitation”; E0, ..., E28
partition S.

EXAMPLE 2: Count the number of goals in a football match.
SAMPLE SPACE: S = {0, 1, 2, 3, ...}. Let Ei = “i goals in the match”; E0, E1, E2, ... partition
S

In both of these examples, we need a formula to specify each P (Ei) = pi.

EXAMPLE 3 Measure the operating temperature of an experimental process.
SAMPLE SPACE: S = { x : x > Tmin }.

Here it is difficult to express

P [ “Measurement is x ” ]

but possible to think about

P [ “Measurement is ≤ x ” ] = F (x), say,

and now we seek a formula for F (x).

A general notation useful for all such examples can be obtained by considering a sample space that
is equivalent to S for a general experiment, but whose form is more familiar. For example, for
a general sample space S, if it were possible to associate a subset of the integer or real number
systems, X say, with S, then attention could be restricted to considering events in X, whose structure

13
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is more convenient, as then S are collections of sample outcomes events in X are intervals of the
real numbers For example, consider an experiment involving counting the number of breakdowns
of a production line in a given month. The experimental sample space S is therefore the collection
of sample outcomes s0, s1, s2, ... where si is the outcome “there were i breakdowns”; events in S are
collections of the sis. Then a useful equivalent sample space is the set X = {0, 1, 2, ...}, and events
in X are collections of non-negative integers. Formally, therefore, we seek a function or map from
S to X. This map is known as a random variable.

2.2 RANDOM VARIABLES

A random variableX is a function from experimental sample space S to some set of real numbers
X that maps s ∈ S to a unique x ∈ X

X : S −→ X ⊆ R
s �−→ x

Interpretation A random variable is a way of describing the outcome of an experiment in terms
of real numbers.

RANDOM VARIABLE TO BE SPECIFIED
EXAMPLE 1 X =“No. days in Feb. with zero precipitation” P [ X = x ] for x = 0, 1, 2, ..., 28

EXAMPLE 2 X =“No. goals in a football match” P [ X = x ] for x = 0, 1, 2, 3, ...

EXAMPLE 3 X =“the measured operating temperature” P [ X ≤ x ] for x > Tmin.

Therefore X is merely the count/number/measured value corresponding to the outcome of the
experiment.

Depending on the type of experiment being carried out, there are two possible forms for the set of
values that X can take:

A random variable is DISCRETE if the set X is of the form

X = {x1, x2, ..., xn} or X = {x1, x2, ...} ,

that is, a finite or infinite set of distinct values x1, x2, ..., xn, .... Discrete random variables are
used to describe the outcomes of experiments that involve counting or classification.

A random variable is CONTINUOUS if the set X is of the form

X =
⋃

i

{x : ai ≤ x ≤ bi}

for real numbers ai, bi, that is, the union of intervals in R. Continuous random variables are used
to describe the outcomes of experiments that involve measurement.



2.3. PROBABILITY DISTRIBUTIONS 15

2.3 PROBABILITY DISTRIBUTIONS

A probability distribution is a function that assigns probabilities to the possible values of a
random variable. When specifying a probability distribution for a random variable, two aspects
need to be considered. First, the range of the random variable (that is, the values of the random
variable which have positive probability) must be specified. Secondly, the method via which the
probabilities are assigned to different values in the range must be specified; typically this is achieved
by means of a function or formula.
In summary, we need to find a function or formula via which

P [ X = x ] or P [ X ≤ x ]

can be calculated for each x in a suitable range X. The functions used to specify these probabil-
ities are just real-valued functions of a single real argument, similar to polynomial, exponential,
logarithmic or trigonometric functions such as (for example)

f(x) = 6x3 − 3x2 + 2x− 5

f(x) = ex

f(x) = sin(x) + 2x cos(2x)

and so on. However, the fundamental rules of probability mean that the functions specifying
P [ X = x ] or P [ X ≤ x ] must exhibit certain properties. As we shall see below, the properties
of these functions, and how they are manipulated mathematically, depend crucially on the nature
os the random variable.

2.4 DISCRETE PROBABILITY DISTRIBUTIONS

For discrete random variables there are two routes via which the probability distribution can be
specified.

2.4.1 PROBABILITY MASS FUNCTION

The probability distribution of a discrete random variableX is described by the probability mass
function (pmf) fX , specified by

fX(x) = P [X = x] for x ∈ X = {x1, x2, ..., xn, ...}

Because of the probability axioms, the function fX must exhibit the following properties:

(i)fX(xi) ≥ 0 for all i (ii)
∑

i

fX(xi) = 1.
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2.4.2 DISCRETE CUMULATIVE DISTRIBUTION FUNCTION

The cumulative distribution function or cdf, FX , is defined by

FX(x) = P [X ≤ x] for x ∈ R

The cdf FX must exhibit the following properties:

(i) lim
x−→−∞

FX(x) = 0

(ii) lim
x−→∞

FX(x) = 1

(iii) lim
h→0+

FX(x+ h) = FX(x) [i.e. FX is continuous from the right]

(iv) a < b =⇒ FX(a) ≤ FX(b) [i.e. FX is non-decreasing]

(v) P [a < X ≤ b] = FX(b)− FX(a)

The cumulative distribution function defined in this way is a “step function”.

The functions fX and/or FX can be used to describe the probability distribution of random
variable X.

EXAMPLE An electrical circuit comprises six fuses.

let X =“number of fuses that fail within one month”. Then

X = {0, 1, 2, 3, 4, 5, 6}

To specify the probability distribution of X, can use the mass function fX or the cdf FX . For
example,

x 0 1 2 3 4 5 6

fX(x)
1
16

2
16

4
16

4
16

2
16

2
16

1
16

FX(x)
1
16

3
16

7
16

11
16

13
16

15
16

16
16

as FX(0) = P [ X ≤ 0 ] = P [ X = 0 ] = fX(0), FX(1) = P [ X ≤ 1 ] = P [ X = 0 ] + P [ X = 1 ] =
fX(0) + fX(1), and so on. Note also that, for example,

P [ X ≤ 2.5 ] ≡ P [ X ≤ 2 ]

as the random variable X only takes values 0, 1, 2, 3, 4, 5, 6.

EXAMPLE A computer is prone to crashes.

Suppose that P [ “Computer crashes on any given day” ] = θ, for some 0 ≤ θ ≤ 1, independently
of crashes on any other day.
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Let X =“number of days until the first crash”. Then

X = {1, 2, 3, ...}

To specify the probability distribution of X, can use the mass function fX or the cdf FX . Now,

fX(x) = P [ X = x ] = (1− θ)x−1θ

for x = 1, 2, 3, ... (if the first crash occurs on day x, then we must have a sequence of x−1 crash-free
days, followed by a crash on day x). Also

FX(x) = P [ X ≤ x ] = P [ X = 1 ] + P [ X = 2 ] + ...+ P [ X = x ] = 1− (1− θ)x

as the terms in the summation are merely a geometric progression with first term θ and common
term 1− θ.

2.4.3 RELATIONSHIP BETWEEN fX AND FX

The fundamental relationship between fX and FX is obtained by noting that if x1 ≤ x2 ≤ ... ≤
xn ≤ ..., then

P [X ≤ xi] = P [X = x1] + ...+ P [X = xi],

so that

FX(x) =
∑

xi≤x

fX(xi) ,

and

fX(x1) = FX(x1) fX(xi) = FX(xi)− FX(xi−1)

fX(xi) = FX(xi)− FX(xi−1) for i ≥ 2

so P [c1 < X ≤ c2] = FX(c2)− FX(c1) for any real numbers c1 < c2.

Hence, in the discrete case, we can calculate FX from fX by summation, and calculate fX from
FX by differencing.
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2.5 SPECIAL DISCRETE PROBABILITY DISTRIBUTIONS

Discrete probability models are used to model the outcomes of counting experiments. Depending
on the experimental situation, it is often possible to justify the use of one of a class of “Special”
discrete probability distributions. These are listed in this chapter, and are all motivated from the
central concept of a binary or 0-1 trial, where the random variable concerned has range consisting
of only two values with associated probabilities θ and 1− θ respectively; typically we think of the
possible outcomes as “successes” and “failures”. All of the distributions in this section are derived
by making different modelling assumptions about sequences of 0-1 trials.

Single 0-1 trial - count number of 1s =⇒ BERNOULLI DISTRIBUTION

n independent 0-1 trials - count number of 1s =⇒ BINOMIAL DISTRIBUTION

Sequence of independent 0-1 trials =⇒ GEOMETRIC DISTRIBUTION
- count number of trials until first 1

Sequence of independent 0-1 trials - =⇒ NEGATIVE BINOMIAL DISTRIBUTION
count number of trials until nth 1 is observed

Limiting case of binomial distribution =⇒ POISSON DISTRIBUTION

Definition 2.5.1 THE DISCRETE UNIFORM DISTRIBUTION:

This model gives equal probability to each of the N possible values of the random variable, and

fX(x) =
1

N
for1 ≤ x ≤ N

and zero otherwise

Definition 2.5.2 THE BERNOULLI DISTRIBUTION

This model gives probabilities for the number of successes in a single 0-1 trial where the
probability of success is θ.

fX(x) = θx(1− θ)1−x x ∈ {0, 1}

Definition 2.5.3 THE BINOMIAL DISTRIBUTION

This model gives probabilities for the number of successes in n 0-1 trials, where the probability of
success is θ

fX(x) =

(
n

x

)
θx(1− θ)n−x =

n!

x!(n− x)!
θx(1− θ)n−x x ∈ {0, 1, ..., n}

where n! = n× (n− 1)× (n− 2)× ...× 3× 2× 1.

Note that the sum of n independent and identically distributed (i.i.d.) Bernoulli(θ) random
variables has a Binomial distribution, that is,

If X1, ...,Xn ∼ Bernoulli(θ) i.i.d., then X =
n∑

i=1

Xi ∼ Binomial(n, θ)
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Definition 2.5.4 THE GEOMETRIC DISTRIBUTION

A model for the number of 0-1 trials until the first success is obtained

fX(x) = (1− θ)x−1θ x ∈ {1, 2, ...}
where the probability of success on each trial is θ. a discrete waiting-time model. Sometimes
this model is specified alternately for the set {0, 1, 2, ...} by

fX(x) = (1− θ)xθ x ∈ {0, 1, 2, ...}
and sometimes in the parameterization φ = 1− θ as

fX(x) = φx (1− φ) x ∈ {0, 1, 2, ...}
Definition 2.5.5 THE NEGATIVE BINOMIAL DISTRIBUTION

A model for the number of 0-1 trials until the nth success is obtained, where the probability of
success on each trial is θ.

fX(x) =

(
x− 1

n− 1

)
θn(1− θ)x−n x ∈ {n, n+ 1, n+ 2, ...} .

The sum of n i.i.d. Geometric(θ) random variables has a Negative Binomial distribution, that is,

If X1, ...,Xn ∼ Geometric(θ) with X1, ...,Xni.i.d, then X =
n∑

i=1

Xi ∼ NegBin(n, θ)

that is, the number of trials until the nth 1 is the sum of the number of trials until the first 1,
plus the number of trials between the first and second 1, etc. For this reason, the negative
binomial distribution is also known as the GENERALIZED GEOMETRIC distribution.

Definition 2.5.6 THE POISSON DISTRIBUTION

A limiting case of the binomial distribution;

fX(x) =
e−λλx

x!
x ∈ {0, 1, 2, ...}

That is, if we write θ = λ/n, and then consider a limiting case as n −→∞, then

fX(x) =

(
n

x

)(
λ

n

)x(
1− λ

n

)n−x
=

λx

x!

(
1− λ

n

)n n!

(n− x)!

(
1

n− λ

)x
−→ λx

x!
e−λ

as n −→∞ with λ constant. That is, we have that

Binomial(n, θ) −→ Poisson(λ)

.in this limiting case. The Poisson model is appropriate for count data, where the number of
events (accidents, breakdowns etc) that occur in a given time period are being counted.

It is also related to the Poisson process; consider a sequence of events occurring
independently and at random in time at a constant rate λ per unit time. Let X(t) be the
random variable defined for t > 0 by

“X(t) = x” if and only if “x events occur in time interval [0, t)”.

Then X(t) ∼ Poisson(λt), so that

fX(t)(x) = P [X(t) = x] =
e−(λt)(λt)x

x!
x ∈ {0, 1, 2, ...} .
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2.6 CONTINUOUS PROBABILITY DISTRIBUTIONS

2.6.1 CONTINUOUS CUMULATIVE DISTRIBUTION FUNCTION

The probability distribution of a continuous random variable X is defined by the continuous cu-
mulative distribution function or c.d.f., FX , specified by

FX(x) = P [X ≤ x] for all x ∈ X

that is, an identical definition to the discrete case.

The continuous cdf FX must exhibit the same properties: as for the discrete cdf, except
(iii) lim

h→0
FX(x+ h) = FX(x) [i.e. FX is continuous]

2.6.2 PROBABILITY DENSITY FUNCTION

The probability density function, or pdf, fX , is defined by

fX(x) =
d

dx
{FX(x)}

so that, by a fundamental calculus result,

FX(x) =

∫ x

−∞
fX(t) dt

The pdf fX must exhibit the following properties:

(i)fX(x) ≥ 0 forx ∈ X (ii)

∫

X

fX(x) dx = 1.

In the continuous case, we calculate FX from fX by integration, and fX from FX by differenti-
ation.
In both discrete and continuous cases, FX(x) id defined for all x ∈ R, and fX(x) also defined for
all x but may be zero for some values of x. Also, if X is continuous, we have

P [ a ≤ X ≤ b ] = FX(b)− FX(a) −→ 0

as b −→ a. Hence, for each x, we must have

P [ X = x ] = 0

if X is continuous. Therefore must use FX to specify the probability distribution initially, although
it is often easier to think of the “shape” of the distribution via the pdf fX . Any function that
satisfies the properties for a pdf can be used to construct a probability distribution. Note that, for
a continuous random variable

fX(x) = P [X = x].
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2.7 SPECIAL CONTINUOUS PROBABILITYDISTRIBUTIONS

Here is a list of probability models are used in standard modelling situations. Unlike the discrete
case, there are not really any explicit links between most of them, although some connections can
be made by means of “transformation” from one variable to another.

Definition 2.7.1 THE CONTINUOUS UNIFORM DISTRIBUTION

A model with constant probability density on a region,

fX(x) =
1

b− a
a < x < b

the cumulative distribution function (cdf) is also straightforward

FX(x) =
x− a

b− a
a < x < b

Definition 2.7.2 THE EXPONENTIAL DISTRIBUTION

A continuous waiting-time model

fX(x) = λe−λx x ∈ R+

The cdf for the exponential distribution can be calculated easily;

FX(x) =

∫ x

−∞
fX(t) dt =

∫ x

0

λe−λt dt = 1− e−λx x ≥ 0.

and note that

P [ X > x ] = 1− P [ X ≤ x ] = 1− FX(x) = e−λx

which may give some motivation for using the Exponential model in practice.

One important property of the Exponential distribution is the lack of memory property which
is defined as follows; consider the conditional probability that random variable X is greater
than x0 + x, given that X is greater than x0; such a conditional probability is important if we are
trying to assess, say, the probability that, if a component functions without failure for a time x0,
it continues to function without failure until x0 + x. From the conditional probability definition,
we have

P [X > x0 + x|X > x0] =
P [(X > x0 + x) ∩ (X > x0)]

P [X > x0]

=
P [X > x0 + x]

P [X > x0]

=
e−λ(x0+x)

e−λx0
= e−λx

= P [X > x]

so that the component has “forgotten” the time period up to x0.
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Definition 2.7.3 THE GAMMA DISTRIBUTION

An extension to the Exponential model

fX(x) =
βα

Γ(α)
xα−1e−βx x ∈ R+

where Γ(α) is a “special function” known as the Gamma Function. It can be computed for any
α > 0.

The Gamma distribution is another continuous waiting-time model. It can be shown the sum of
i.i.d. Exponential random variables has a Gamma distribution, that is, if X1,X2, ...,Xn are
independent and identically distributed Exponential(λ) random variables, then

X =
n∑

i=1

Xi ∼ Gamma(n, λ)

Notes :

(1) If α > 1, Γ(α) = (α− 1)Γ(α− 1).; If α = 1, 2, ..., Γ(α) = (α− 1)!.

(2) Γ(1/2) =
√
π.

(3) If α = 1, 2, ..., then the Gamma(α/2, 1/2) distribution is known as the Chi-squared
distribution with α degrees of freedom, denoted χ2α.

Definition 2.7.4 THE NORMAL DISTRIBUTION

A probability model that reflects observed (empirical) behaviour of data samples; this
distribution is often observed in practice.

fX(x) =

(
1

2πσ2

)1/2
exp

{
− 1

2σ2
(x− µ)2

}
x ∈ R.

The pdf is symmetric about µ, and hence µ is controls the location of the distribution and σ2

controls the spread or scale of the distribution.

Notes :

(1) The Normal density function is justified by the Central Limit Theorem.

(2) Special case: µ = 0, σ2 = 1 - the standard or unit normal distribution. In this case, the
density function is denoted φ(x), and the cdf is denoted Φ(x) so that

Φ(x) =

∫ x

−∞
φ(t) dt =

∫ x

−∞

(
1

2π

)1/2
exp

{
−1

2
t2

}
dt.

This integral can only be calculated numerically.

(3) If X ∼ N(0, 1), and Y = σX + µ, then Y ∼ N(µ, σ2).

(4) If X ∼ N(0, 1), and Y = X2, then Y ∼ Gamma(1/2, 1/2) = χ21.

(5) If X ∼ N(0, 1) and Y ∼ χ2α are independent random variables, then random variable T ,
defined by

T =
X√
Y/α

has a Student-t distribution with α degrees of freedom. The Student-t distribution plays
an important role in certain statistical testing procedures.
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2.8 EXPECTATION AND VARIANCE

For a discrete random variable X taking values in set X with mass function fX , the expectation
of X is defined by

EfX [ X ] =
∑

x∈X

xfX(x) ≡
∞∑

x=−∞

xfX(x)

For a continuous random variable X with pdf fX , the expectation of X is defined by

EfX [X] =

∫

X

xfX(x) dx ≡
∫ ∞

−∞
xfX(x) dx

The variance of X is defined by

V arfX [X] = EfX [(X − EfX [X])2] = EfX
[
X2

]
− {EfX [X]}2 .

Interpretation : The expectation and variance of a probability distribution can be used to aid
description, or to characterize the distribution; the EXPECTATION is a measure of location (that
is, the “centre of mass” of the probability distribution. The VARIANCE is a measure of scale or
spread of the distribution (how widely the probability is distributed) .

EXAMPLE Suppose thatX is a discrete Poisson random variable taking values onX = {0, 1, 2, ...}
with pdf

fX(x) =
λx

x!
e−λ x = 0, 1, 2, ...

and zero otherwise. Then

EfX [ X ] =
∞∑

x=−∞
xfX(x) =

∞∑
x=0

x
λx

x!
e−λ = λe−λ

∞∑
x=1

λx−1

(x− 1)!
= λe−λ

∞∑
x=0

λx

x!
= λe−λeλ = λ

using the power series expansion definition for the exponential function

eλ =
∞∑

x=0

λx

x!
= 1 + λ+

λ2

2!
+

λ3

3!
+ ...

EXAMPLE Suppose that X is a continuous random variable taking values on X = R+ with pdf

fX(x) =
2

(1 + x)3
x > 0.

Then, integrating by parts.

EfX [ X ] =

∫ ∞

−∞
xfX(x) dx =

∫ ∞

0

2x

(1 + x)3
dx =

[
− x

(1 + x)2

]∞

0

+

∫ ∞

0

1

(1 + x)2
dx

= 0−
[
− 1

1 + x

]∞

0

= 1
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2.8.1 EXPECTATIONS OF SUMS OF RANDOM VARIABLES:

Suppose that X1 and X2 are independent random variables, and a1 and a2 are constants. Then if
Y = a1X1 + a2X2, it can be shown that

EfY [Y ] = a1EfX1 [X1] + a2EfX2 [X2]

V arfY [Y ] = a21V arfX1 [X1] + a22V arfX2 [X2]

so that, in particular (when a1 = a2 = 1) we have

EfY [Y ] = EfX1 [X1] +EfX2 [X2]

V arfY [Y ] = V arfX1 [X1] + V arfX2 [X2]

so we have a simple additive property for expectations and variances. Note also that if a1 = 1, a2 =
−1, then

EfY [Y ] = EfX1 [X1]−EfX2 [X2]

V arfY [Y ] = V arfX1 [X1] + V arfX2 [X2]

Sums of random variables crop up naturally in many statistical calculations. Often we are interested
in a random variable Y that is defined as the sum of some other independent and identically
distributed (i.i.d) random variables, X1, ...,Xn. If

Y =
n∑

i=1

Xi with EfXi [Xi] = µ and V arfXi [Xi] = σ2

we have

EfY [Y ] =
n∑

i=1

EfXi [Xi] =
n∑

i=1

µ = nµ and V arfY [Y ] =
n∑

i=1

V arfXi [Xi] =
n∑

i=1

σ2 = nσ2

and also, if

X =
1

n

n∑

i=1

Xi is the sample mean random variable

then, using the properties listed above

Ef
X

[
X

]
=

1

n
EfY [Y ] =

1

n
nµ = µ and V arfY [Y ] =

1

n2
V arfY [Y ] =

1

n2
nσ2 =

σ2

n

2.8.2 EXPECTATIONS OF A FUNCTION OF A RANDOM VARIABLE

Suppose thatX is a random variable, and g(.) is some function. Then we can define the expectation
of g(X) (that is, the expectation of a function of a random variable) by

EfX [ g(X) ] =





∞∑

x=−∞

g(x)fX(x) DISCRETE CASE

∫ ∞

−∞
g(x)fX(x) dx CONTINUOUS CASE
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For example, if X is a continuous random variable, and g(x) = exp{−x} then

EfX [ g(X) ] = EfX [ exp {−X} ] =

∞∫

−∞

exp{−x} fX(x) dx

Note that Y = g(X) is also a random variable whose probability distribution we can calculate from
the probability distribution of X.

2.8.3 RESULTS FOR STANDARD DISTRIBUTIONS

The expectations and variances for the special distributions described in previous sections are as
follows:

• DISCRETE DISTRIBUTIONS

Parameters EXPECTATION VARIANCE
Bernoulli(θ) θ θ θ(1− θ)

Binomial(n, θ) n, θ nθ nθ(1− θ)

Poisson(λ) λ λ λ

Geometric(θ) θ
1

θ

(1− θ)

θ2

NegBinomial(n, θ) n, θ
n

θ

n(1− θ)

θ2

• CONTINUOUS DISTRIBUTIONS

Parameters EXPECTATION VARIANCE

Uniform(a, b) a, b
a+ b

2

(b− a)2

12

Exponential(λ) λ
1

λ

1

λ2

Gamma(α, β) α, β
α

β

α

β2

Beta(α, β) α, β
α

α+ β

αβ

(α+ β)2(α+ β + 1)

Normal(µ, σ2) µ, σ2 µ σ2
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2.8.4 ENTROPY

For a random variable X with mass or density function fX , the entropy of the distribution is
defined by

HfX [X] = EfX [− log fX(X)] =





−
∑

x

log [fX(x)] fX(x) DISCRETE CASE

−
∫

log [fX(x)] fX(x)dx CONTINUOUS CASE

where log in this case can mean logarithm to any base; typically, log2 or ln (natural log) are
used. One interpretation of the entropy of a distribution is that it measures the “evenness” of the
distribution, that is, a distribution with high entropy assigns approximately equal probability to
each value of the random variable.

EXAMPLES Consider the discrete uniform distribution

fX(x) =
1

N
x = 1, 2, ...,N

Then

HfX [X] = −
∑

x

log [fX(x)] fX(x) = −
N∑

x=1

log

[
1

N

]
× 1

N
= logN

In fact, the uniform distribution is the distribution for which entropy is maximized. Now consider
the discrete distribution, fX(x) = 1 when x = x0, and zero otherwise (so that P[X = x0] = 1, and
thus X is certain to take the value x0). Then

HfX [X] = log [fX(x0)]× fX(x0) = 0

These two examples illustrate another interpretation for the entropy as an overall measure of
uncertainty. In the first example, there is the maximum possible uncertainty, whereas in the
second example the uncertainty is at a minimum.

2.8.5 RELATIVE ENTROPY

It is also possible to compare two distributions using an entropy measure. Consider two discrete
distributions with mass functions f0 and f1. Then the relative entropy of f1 with respect to f0
, Hf0||f1 , and the relative entropy of f0 with respect to f1 , Hf1||f0 , are defined by

Hf0||f1 [X] = Ef0

[
log

{
f0(X)

f1(X)

}]
=

∑

x

log

{
f0(x)

f1(x)

}
f0(x)

Hf1||f0 [X] = Ef1

[
log

{
f1(X)

f0(X)

}]
=

∑

x

log

{
f1(x)

f0(x)

}
f1(x)

where the sum extends over values of x for which both f0 and f1 are non-zero. It is also possible
to obtain an overall measure of the difference in entropy terms between the two distributions as
the sum of these two measures.

Hf0,f1 [X] = Hf0||f1 [X] +Hf1||f0 [X] =
∑

x

log

{
f0(x)

f1(x)

}
f0(x) +

∑

x

log

{
f1(x)

f0(x)

}
f1(x)
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It can be shown that Hf0||f1 [X],Hf1||f0 [X] and hence Hf0,f1 [X] are all non-negative. Furthermore,
we can define the support for x in favour of f0 over f1, denoted S0,1(x) by

S0,1(x) = log

{
f0(x)

f1(x)

}

with the equivalent definition for S1,0(x) (where S1,0(x) = −S0,1(x)) Using this definition, we see
that S0,1(X) is a random variable, and using the general definition of expectation we have that the
expectation of S0,1(x) is

∑

x

S0,1(x) f0(x) =
∑

x

log

{
f0(x)

f1(x)

}
f0(x) = Hf0||f1 [X]

2.9 TRANSFORMATIONS OF RANDOM VARIABLES

Consider a discrete or continuous random variable X with range X and probability distribution
described by mass/pdf fX , or cdf FX . Suppose g is a function. Then Y = g(X) is also a random
variable as Y and typically we wish to derive the probability distribution of random variable Y ; in
order to do this, we might consider the inverse transformation g−1 from Y to X Consider first the
cdf of Y , FY , evaluated at a point y ∈ . We have

FY (y) = P[ Y ≤ y ] = P[ g(X) ≤ y ] =





∑

x∈Ay

fX(x) if X is discrete

∫

Ay

fX(x) dx if X is continuous

where Ay = { x ∈ X : g(x) ≤ y}. Often, the set is Ay is easy to identify for a given y, and this
becomes our main objective in the calculation.

EXAMPLE Suppose that g(x) = expx. Then

FY (y) = P [ Y ≤ y ] = P [ expX ≤ y ] = P [ X ≤ log y ] = FX(log y)

so that Ay = { x ∈ X : expx ≤ y} = { x ∈ X : x ≤ log y}

EXAMPLE Suppose that g(x) = ax+ b. Then

FY (y) = P [ Y ≤ y ] = P [ aX + b ≤ y ] = P

[
X ≤ y − b

a

]
= FX

(
y − b

a

)

so that Ay = { x ∈ X : ax+ b ≤ y} = { x ∈ X : x ≤ (y − b)/a} .

EXAMPLE Suppose that g(x) = x2. Then

FY (y) = P [ Y ≤ y ] = P
[
X2 ≤ y

]
= P [−√y ≤ X ≤ √y] = FX (

√
y)− FX (−√y)

so that Ay =
{
x ∈ X : x2 ≤ y

}
=

{
x ∈ X :

√
y ≤ x ≤ √y

}
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We may be interested in the mass or density function of the newly formed variable Y ; in that
case we could take the cdf formed above and use it to calculate the mass function/pdf. For example,
if Y = aX + b when a > 0 then

FY (y) = FX

(
y − b

a

)
=⇒ fY (y) =

d

dy

{
FX

(
y − b

a

)}
=

d

dy

{(
y − b

a

)}
fY

(
y − b

a

)
=

1

a
fX

(
y − b

a

)

using the chain rule for differentiation that says

d

dx
{g(h(x)} = h′(x)g′(h(x)) whereg′(x) =

dg(x)

dx
h′(x) =

dh(x)

dx

In the discrete case, it may be easier to consider the mass function directly rather than the
cdf. However, for a particular type of transformations, namely 1-1 transformations, it is possible
to produce a general transformation result that allows direct calculation of the distribution of the
transformed variable.

2.9.1 LOCATION/SCALE TRANSFORMATIONS

A particular type of 1-1 transformation is a location/scale transformation; this transformation take
the form

Y = µ+ λX

where µ and λ > 0 are two real-parameters. The pdf of the location/scale transformed variable Y
was derived above using first principles

FY (y) = P [Y ≤ y] = P [µ+ λX ≤ y] = P

[
X ≤ y − µ

λ

]
= FX

(
y − µ

λ

)

and therefore, by differentiation

fY (y) =
d

dy

{
FX

(
y − µ

λ

)}
=

1

λ
fX

(
y − b

λ

)

Sometimes we are interested in a scale transformation only where µ = 0 in the transformation
above.

2.9.2 TRANSFORMATION CONNECTIONS BETWEEN DISTRIBUTIONS

Some of the continuous distributions that we have studied are directly connected by transformations

Distribution of X Transformation Distribution of Y

X ∼ Uniform(0, 1) Y = −1

λ
logX Y ∼ Exponential(λ)

X ∼ Gamma(α, 1) Y = X/β Y ∼ Gamma(α, β)

X ∼ Normal(0, 1) Y = µ+ σX Y ∼ Normal(µ, σ2)

X ∼ Normal(0, 1) Y = X2 Y ∼ Gamma
(
1
2 ,
1
2

)
≡ χ21
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2.10 JOINT PROBABILITY DISTRIBUTIONS

Consider a vector of k random variables,X = (X1, ...,Xk), (representing the outcomes of k different
experiments carried out once each, or of one experiment carried out k times). The probability
distribution of X is described by a joint probability mass or density function.

e.g. Consider the particular case k = 2, X = (X1,X2). Then the following functions are used to
specify the probability distribution of X;

2.10.1 JOINT PROBABILITY MASS/DENSITY FUNCTIONS

The joint mass/density function is denoted

fX1,X2(x1, x2)

that is, a function of two variables.

- This function assigns probability to the joint space of outcomes

- in the discrete case,

fX1,X2(x1, x2) = P [(X1 = x1) ∩ (X2 ∩ x2)]

- which implies that we need

(i) fX1,X2(x1, x2) ≥ 0 for all possible outcomes x1, x2.

(ii)
∑∑

fX1,X2(x1, x2) = 1 or

∫ ∫
fX1,X2(x1, x2) dx1dx2 = 1

where the double summation/integration is over all possible values of (x1, x2).

Typically, such a specification is represented by a probability table; for example for discrete
random variables X1 and X2, we could have

X1

1 2 3 4

1 0.100 0.200 0.000 0.000

2 0.200 0.250 0.050 0.000
X2

3 0.000 0.050 0.050 0.025

4 0.000 0.000 0.025 0.050

where the entry in column i, row j is

fX1,X2(i, j) = P [X1 = i) ∩ (X2 = j)] = P [X1 = i,X2 = j],

Here we only study joint distributions for two variables, but the extension to more than two variables
is straightforward.
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2.10.2 MARGINAL MASS/DENSITY FUNCTIONS

The joint mass function automatically defines the probability distribution of the individual random
variables. For example, if k = 2, then we have the two marginal mass/density functions are fX1(x1)
and fX2(x2). In the discrete and continuous cases respectively

fX1(x1) =
∑

x2

fX1,X2(x1, x2) fX2(x2) =
∑

x1

fX1,X2(x1, x2)

fX1(x1) =

∫
fX1,X2(x1, x2) dx2 fX2(x2) =

∫
fX1,X2(x1, x2) dx1

so the marginal mass/density function for random variable X1 is obtained by summing/integrating
out the joint mass/density function for X1 and X2 over all possible values of random variable X2.
In the discrete case

P [X1 = x1] =
∑

x2

P [(X1 = x1) ∩ (X2 = x2)]

which is a result that is justified by the Theorem of Total Probability.

In the table above, the marginal mass functions can be computed easily

X1 ↓
1 2 3 4 fX2 (x2)

1 0.100 0.200 0.000 0.000 0.300

2 0.200 0.250 0.050 0.000 0.500
X2

3 0.000 0.050 0.050 0.025 0.125

4 0.000 0.000 0.025 0.050 0.075

→ fX1 (x1) 0.300 0.500 0.125 0.075

so that the marginal mass functions are formed by the column and row sums respectively. In this
case, it turns out that fX1 (x) = fX2 (x), for each x = 1, 2, 3, 4, but this will not always be the case.

2.10.3 CONDITIONAL MASS/DENSITY FUNCTIONS

In the discrete two variable case, consider the probability

P [ X1 = x1 | X2 = x2 ]

that is, the conditional probability distribution of X1, given that X2 = x2. This conditional
distribution is easily computed from the conditional probability definition, that is

P [X1 = x1|X2 = x2] =
P [ X1 = x1, X2 = x2 ]

P [ X2 = x2 ]
=

fX1,X2(x1, x2)

fX2(x2)

that is, proportional to the x2 row of the table.
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By extending these concepts, we may define the conditional probability distributions for both
variables in the discrete and continuous cases; The two conditional mass/density functions are
fX1|X2(x1|x2) and fX2|X1(x2|x1)

fX1|X2(x1|x2) =
fX1,X2(x1, x2)

fX2(x2)
fX2(x2) > 0

fX2|X1(x2|x1) =
fX1,X2(x1, x2)

fX1(x1)
fX1(x1) > 0

In the discrete case, this result becomes

fX1|X2(x1|x2) = P [X1 = x1|X2 = x2] =
P [(X1 = x1) ∩ (X2 = x2)]

P [X2 = x2]

if P [X2 = x2] > 0, which is justified by the definition of conditional probability.

For example, consider the table

X1

1 2 3 4 fX2 (x2)

1 0.100 0.200 0.000 0.000 0.300

2 0.200 0.250 0.050 0.000 0.500
X2

3 0.000 0.050 0.050 0.025 0.125

4 0.000 0.000 0.025 0.050 0.075

fX1 (x1) 0.300 0.500 0.125 0.075

The highlighted column gives the conditional mass function for X2 given that X1 = 2; from the
definition,

fX2|X1(1|2) =
0.200

0.500
= 0.400 fX2|X1(1|2) =

0.250

0.500
= 0.500

fX2|X1(3|2) =
0.050

0.500
= 0.100 fX2|X1(4|2) =

0.000

0.500
= 0.000

Note that

4∑

x=1

fX2|X1(x|2) = 0.400 + 0.500 + 0.100 + 0.000 = 1

which we must have for a conditional mass function.

Note that, in general, the conditional mass functions will be different for different values of
the conditioning variable.



32 CHAPTER 2. PROBABILITY DISTRIBUTIONS

SUMMARY

Suppose thatX1 andX2 are discrete random variables that take values {1, 2, ..., n} and {1, 2, ...,m}
respectively. Then the joint mass function can be displayed as a table with n columns and m rows,
where

• the (i, j)th cell contains P [(X1 = i) ∩ (X2 = j)]

• the marginal mass function for X1 is given by the column totals

• the marginal mass function for X2 is given by the row totals

• the conditional mass function for X1 given X2 = j is given by the jth row divided by the
sum of the jth row

• the conditional mass function for X2 given X1 = i is given by the ith column divided by the
sum of the ith column

for i = 1, ..., n and j = 1, ...,m.

CONTINUOUS EXAMPLE
If the joint density of continuous variables X1 and X2 is given by

fX1,X2(x1, x2) = x22e
−x2(1+x1)

for x1, x2 ≥ 0 and zero otherwise. It can be shown that
∫ ∞

−∞

∫ ∞

−∞
fX1,X2(x1, x2) dx1dx2 = 1

and that the marginal pdf for X1 is given by

fX1(x1) =

∫ ∞

−∞
fX1,X2(x1, x2) dx2 =

∞∫

0

x22e
−x2(1+x1) dx2 =

2

(1 + x1)3

for x1 ≥ 0, and zero otherwise.

2.10.4 INDEPENDENCE

Random variables X1 and X2 are independent if

(i) the joint mass/density function of X1 and X2 factorizes into the product of the two marginal
pdfs, that is,

fX1,X2(x1, x2) = fX1(x1)fX2(x2)

(ii) the range of X1 does not conflict/influence/depend on the range of X2 (and vice versa).

The concept of independence for random variables is closely related to the concept of independence
for events.
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2.10.5 THE MULTINOMIAL DISTRIBUTION

The multinomial distribution is a multivariate generalization of the binomial distribution. One
interpretation of the binomial distribution is that it is the probability distribution for the random
variable that counts the number of “successes” in a sequence of Bernoulli experiments. Let us label
the “successes” (1) as Type I outcomes and “failures” (0) as Type II outcomes. Suppose as
usual that the probability of Type I outcomes is θ (so 0 ≤ θ ≤ 1) and hence the probability of Type
II outcomes in the urn is 1 − θ. If n experiments are carried out, and X is the random variable
corresponding to the number of Type I outcomes, then X ∼ Binomial(n, θ)

fX(x) =

(
n

x

)
θx(1− θ)n−x x ∈ {0, 1, 2, ..., n}

Now consider a generalization; suppose that there are k + 1 types of outcomes (k = 1, 2, ...), with

“Probability of type i outcome” = θi

for i = 1, ..., k+1. Let Xi be the random variable corresponding to the number of type i outcomes
in n repeats of the experiment, for i = 1, ..., k. Then the joint distribution of vectorX = (X1, ...,Xk)
is given by

fX1,...,Xk(x1, ..., xk) =
n!

x1!...xk!xk+1!
θx11 ....θxkk θk+1

xk+1 =

(
n

x1, x2, ..., xk

) k+1∏

i=1

θxii

where 0 ≤ θi ≤ 1 for all i, and θ1 + ... + θk + θk+1 = 1, and where xk+1 is defined by xk+1 =
n − (x1 + ... + xk). This is the mass function for the MULTINOMIAL DISTRIBUTION
which reduces to the binomial if k = 1. It can also be shown that the marginal distribution of Xi
is given by

Xi ∼ Binomial(n, θi).

EXAMPLE Consider the sequence

ATAGTAGATACGCACCGAGGA

For the probability of seeing such a sequence, we let

P (A) = pA P (C) = pC P (G) = pG P (T ) = pT

for some suitable probabilities satisfying

0 ≤ pA, pC , pG, pT ≤ 1 pA + pC + pG + pT = 1

and assume independence so that

P (ATAGTAGATACGCACCGAGGA) = pA × pT × pA × ...× pG × pA

which simplifies to

P (ATAGTAGATACGCACCGAGGA) = p8Ap
4
Cp

6
Gp

3
T

However, for if we merely wish to identify the probability that in a sequence of 21 bases, we observe 8
A, 4 C, 6 G and 3 T in any order then the multinomial distribution is used, that is the probability
is given by

(
21

8, 4, 6, 3

)
p8Ap

4
Cp

6
Gp

3
T =

21!

8!× 4!× 6!× 3!
p8Ap

4
Cp

6
Gp

3
T
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2.11 COVARIANCE AND CORRELATION

Definition 2.11.1 COVARIANCE
The covariance of two random variables X1 and X2 is denoted CovfX1,X2 [X1, X2], and is defined
by

CovfX1,X2 [X1, X2] = EfX1,X2 [(X1 − µ1)(X2 − µ2)] = EfX1,X2 [X1X2]− µ1µ2

where

EfX1,X2 [X1X2] =





∑

x2

∑

x1

x1x2fX1,X2 (x1, x2) X1and X2discrete

∫ ∫
x1x2fX1,X2 (x1, x2) dx1dx2 X1and X2continuous

is the expectation of the function g (x1, x2) = x1x2 with respect to the joint probability function
fX1,X2 , and where µi = EfXi [Xi] is the expectation of Xi, for i = 1, 2.

Definition 2.11.2 CORRELATION
The correlation of X1 and X2 is denoted CorrfX1,X2 [X1,X2], and is defined by

CorrfX1,X2 [X1,X2] =
CovfX1,X2 [X1, X2]√

V arfX1 [X1] V arfX2 [X2]

If

CovfX1,X2 [X1,X2] = CorrfX1,X2 [X1, X2] = 0

then variables X1 and X2 are uncorrelated. Note that if random variables X1 and X2 are
independent then

CovfX1,X2 [X1,X2] = EfX1,X2 [X1X2]− EfX1 [X1]EfX2 [X2] = EfX1 [X1]EfX2 [X2]− EfX1 [X1]EfX2 [X2] = 0

and so X1 and X2 are also uncorrelated (note that the converse does not necessarily hold).

Key interpretation

COVARIANCE AND CORRELATION ARE MEASURES

OF THE

DEGREE OF ASSOCIATION BETWEEN VARIABLES

that is, two variables for which the correlation is large in magnitude are strongly associated,
whereas variables that have low correlation are weakly associated.
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2.11.1 PROPERTIES OF COVARIANCE AND CORRELATION

(i) For random variables X1 and X2, with (marginal) expectations µ1 and µ2 respectively, and
(marginal) variances σ21 and σ22 respectively, if random variables Z1 and Z2 are defined Z1 =
(X1 − µ1)/σ1 and Z2 = (X2 − µ2)/σ2 so that Z1 and Z2 are standardized variables. Then

CorrfX1,X2 [X1,X2] = CovfZ1,Z2 [Z1, Z2].

(ii) The extension to k variables: covariances can only be calculated for pairs of random variables,
but if k variables have a joint probability structure it is possible to construct a k×k matrix, C say,
of covariance values, whose (i, j)th element is

CovfXi,Xj [Xi,Xj] = CovfXi,Xj [Xi,Xj ]

for i, j = 1, .., k, (so C is symmetric) that captures the complete covariance structure in the joint
distribution. If i = j,

CovfXi,Xi [Xi,Xi] ≡ V arfXi [Xi]

The matrix C is referred to as the variance-covariance matrix.

(iii) If random variable X is defined by

X =
k∑

i=1

aiXi

for random variables X1, ...,Xk and constants a1, ..., ak, then

EfX [X] =
k∑

i=1

aiEfXi [Xi]

V arfX [X] =
k∑

i=1

a2iV arfXi [Xi] + 2
k∑

i=1

i−1∑

j=1

aiajCovfXi,Xj [Xi,Xj ]

(iv) Combining (i) and (iii) when k = 2, and defining standardized variables Z1 and Z2,

0 ≤ V arfZ1,Z2 [Z1 ±Z2] = V arfZ1 [Z1] + V arfZ2 [Z2]± 2 CovfZ1,Z2 [Z1, Z2]

= 1 + 1± 2 CorrfX1,X2 [X1,X2]

= 2(1±CorrfX1,X2 [X1,X2])

and hence we have the key result that

−1 ≤ CorrfX1,X2 [X1,X2] ≤ 1.

that is, the correlation is bounded between -1 and 1. We will see later how to compute covari-
ance and correlation for sample data; there is a close relationship between theoretical and sample
covariances and correlations.
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2.12 EXTREME VALUES

2.12.1 ORDER STATISTICS, MAXIMA AND MINIMA

Definition 2.12.1 ORDER STATISTICS
For n random variables X1, ....,Xn, the order statistics, Y1, ...., Yn, are defined by

Yi = X(i) − “the ithsmallest value in X1, ....,Xn”

for i = 1, ..., n, so that

Y1 = X(1) = min {X1, ...,Xn} Yn = X(n) = max{X1, ...,Xn}
For n independent, identically distributed random variablesX1, ...,Xn, with marginal density func-
tion fX , there are two main results to consider; it can be shown that the joint density function of
the order statistics Y1, ...., Yn is given by

fY1,...,Yn(y1, ..., yn) = n!fX(y1)...fX(yn) y1 < ... < yn

and that the marginal pdf of the jth order statistic Yj for j = 1, ..., n has the form

fYj (yj) =
n!

(j − 1)!(n− j)!
{FX(yj)}j−1 {1− FX(yj)}n−j fX(yj)

To derive the marginal pdf of the maximum Yn, first consider the marginal cdf of Yn;

FYn(yn) = P [Yn ≤ yn] = P [max {X1, ...,Xn} ≤ yn] = P [X1 ≤ yn, X2 ≤ yn, ...,Xn ≤ yn]

=
n∏

i=1

P [Xi ≤ yn] =
n∏

i=1

{FX(yn)}

= {FX(yn)}n

and so

fYn(yn) = n {FX(yn)}n−1 fX(yn) differentiating using the chain rule

By a similar calculation, we can find the marginal pdf/cdf for the minimum Y1;

FY1(y1) = P [Y1 ≤ y1] = 1− P [Y1 > y1] = 1− P [min {X1, ...,Xn} > y1]

= 1− P [X1 > y1,X2 > y1, ...,Xn > y1]

= 1−
n∏

i=1

P [Xi > y1] = 1−
n∏

i=1

{1− FX(y1)}

= 1− {1− FX(y1)}n

and so

fY1(y1) = n {1− FX(y1)}n−1 fX(y1) differentiating using the chain rule

Hence

FY1(y1) = 1− {1− FX(y1)}n fY1(y1) = n {1− FX(y1)}n−1 fX(y1)
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2.12.2 GENERAL EXTREME VALUE THEORY

A special probabilistic theory has been developed for extreme observations (i.e. maxima or minima)
derived from sequences of independent (and, indeed dependent) sequences of random variables
X1, ....,Xn. The theory is based on the following general “large sample” or asymptotic results.
Results for maxima are given here, and the results for minima follow by considering the maxima
of the sequence with their sign changed, that is, the sequence

(−X1) , ...., (−Xn)

Theorem 2.12.1 Let Mn be the maximum of a sample of n independent and identically
distributed random variables X1, ....,Xn. Then there exist real constants cn > 0 and dn such that
the distribution of the random variable

Zn =
Mn − dn

cn

converges in distribution to one of three continuous probability distributions as n→∞; we
write

Zn
d→ Z ∼ FZ

where FZ is either

(I) the Frechet-type distribution with cdf

FZ (z) =





0 z < µ

exp

{
−

(
z − µ

σ

)−α}
z ≥ µ

for parameters α, σ > 0 and µ ∈ R

(II) the Weibull-type distribution with cdf

FZ (z) =





exp

{
−

(
µ− z

σ

)α}
z ≤ µ

1 z > µ

for parameters α, σ > 0 and µ ∈ R.

(III) the Gumbel-type distribution with cdf

FZ (z) = exp

{
− exp

{
−

(
z − µ

σ

)}}
−∞ < z <∞

for parameters σ > 0 and µ ∈ R.
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Type (I) and Type (II) distributions are transformed versions of Type (III) distributions; the
transformations are

log (Z − µ) and − log (µ− Z)

respectively. In addition, the distribution of the variable (−Z) has, in each case an extreme value
distribution.

Definition 2.12.2 GENERALIZED EXTREME VALUE DISTRIBUTION

The three distributions above can be incorporated into a single probability distribution, the
Generalized Extreme Value (GEV) distribution.by allowing the parameters to take their specific
values or limiting forms; this cdf takes the form

FZ (z) = exp

{
−

(
1 + ξ

(
z − µ

σ

))−1/ξ}
1 + α

(
z − µ

σ

)
> 0

for parameters −∞ < µ, α <∞ and σ > 0. We have that

(I)ξ = 1/α > 0 gives the Frechet-type distribution

(II) ξ = −1/α < 0 gives the Weibull-type distribution

(III) ξ → 0 gives the Gumbel-type distribution

The GEV distribution describes the probability distribution of maximum order statistics. We now
consider threshold-excedance distributions; that is, the distribution of observed values beyond
a certain high threshold value. Let X be a random variable with cdf FX , and for some fixed u, let

Y = (X − u) IX>u

that is, Y = X − u if X > u. By straightforward calculation

FY (y;u) = P [Y ≤ y;u] = P [X ≤ u+ y|X > u] =
FX (u+ y)− FX (u)

1− FX (u)
y > 0

The distribution of Y as u approaches some upper endpoint is known as the Generalized Pareto
Distribution.

Definition 2.12.3 GENERALIZED PARETO DISTRIBUTION

The Generalized Pareto Distribution (GPD) for random variable Y, given some threshold u, takes
the form

FY (y;u) = 1−
(
1 + ξ

y

σu

)−1/ξ
y > 0

that is, the parameter σu depends on the threshold u, and the parameter ξ does not

For events occurring in time or space, the number N of events that exceed a threshold u in any
time interval t, X(t), is often adequately modelled using a Poisson distribution with parameter
λt; we say that the events occur at rate λ. Given that N ≥ 1, the excedances themselves are
distributed according to the GPD model, and the largest excedance is well modelled using a GEV
distribution.
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STATISTICAL ANALYSIS

Statistical analysis involves the informal/formal comparison of hypothetical or predicted behaviour
with experimental results. For example, we wish to be able to compare the predicted outcomes
of an experiment, and the corresponding probability model, with a data histogram. We will use
both qualitative and quantitative approaches.

3.1 GENERAL FRAMEWORK, NOTATIONANDOBJECTIVES

Suppose that an experiment or trial is to be repeated n times under identical conditions. Let Xi
be the random variable corresponding to the outcome of the ith trial, and suppose that each of the
n random variables X1, ...,Xn takes values in sample space X. Often, assumptions can reasonably
be made about the experimental conditions that lead to simplifications of the joint probability
model for the random variables. Essentially, the assumption of identical experimental conditions
for each of the n trials implies that the random variables corresponding to the trial outcomes are
identically distributed, that is, in the usual notation, the (marginal) mass/density function of
Xi is denoted f(x) dropping the subscript on the function f . Another common assumption is that
the random variables X1, ...,Xn are independent. Thus X1, ...,Xn are usually treated as i.i.d.
random variables.

In practice, it is commonly assumed that f takes one of the familiar forms (Binomial, Poisson,
Exponential, Normal etc.). Thus f depends on one or more parameters (θ, λ, (µ, σ) etc.). The
role of these parameters could be indicated by re-writing the function f(x) as

f(x) ≡ f(x; θ) x ∈ X (∗)

where θ here is a parameter, which may possibly be vector-valued.

It is important here to specify precisely the range of values which this parameter can take;
in a Poisson model, we have parameter λ > 0, and in a Normal model, we have parameters
µ ∈ R, σ ∈ R+. In the general case represented by (*) above, we have parameter θ ∈ Θ where Θ is
some subset of Rd and d = 1, 2, say, is the number of parameters. We refer to Θ as the parameter
space. In practice, of course, parameter θ is unknown during the experiment.

39
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3.1.1 OBJECTIVES OF A STATISTICAL ANALYSIS

After the experiment has been carried out, a sample of observed data will have been obtained.
Suppose that we have observed outcomes x1, ..., xn on the n trials (that is, we have observed
X1 = x1,X2 = x2, ...,Xn = xn), termed a random sample. This sample can be used to answer
qualitative and quantitative questions about the nature of the experiment being carried out. The
objectives of a statistical analysis can be summarized as follows. We want to, for example,

• SUMMARY : Describe and summarize the sample {x1, ..., xn} in such a way that allows
a specific probability model to be proposed.

• INFERENCE : Deduce and make inference about the parameter(s) of the probability
model θ.

• TESTING : Test whether θ is “significantly” larger/smaller/different from some specified
value.

• GOODNESSOF FIT : Testwhether the probability model encapsulated in the mass/density
function f , and the other model assumptions are adequate to explain the experimental re-
sults.

The first objective can be viewed as an exploratory data analysis exercise - it is crucially important
to understand whether a proposed probability distribution is suitable for modelling the observed
data, otherwise the subsequent formal inference procedures (estimation, hypothesis testing, model
checking) cannot be used.

3.2 EXPLORATORY DATA ANALYSIS

We wish first to produce summaries of the data in order to convey general trends or features that
are present in the sample. Secondly, in order to propose an appropriate probability model, we seek
tomatch features in the observed data to features of one of the conventional (Poisson, Exponential,
Normal) probability distributions that may be used in more formal analysis. The four principal
features that we need to assess in the data sample are

1. The location, or the “average value” in the sample.

2. The mode, or “most likely” value or interval observed in the sample.

3. The scale or spread in the sample.

4. The skewness or asymmetry in the sample.

These features of the sample are important because we can relate them directly to features of
probability distributions.
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3.2.1 NUMERICAL SUMMARIES

The following quantities are useful numerical summary quantities

• Sample mean

x =
1

n

n∑

i=1

xi

• Sample variance: either (S2 or s2 may be used)

S2 =
1

n

n∑

i=1

(xi − x)2 s2 =
1

n− 1

n∑

i=1

(xi − x)2

• Sample quantiles: suppose that the sample has been sorted into ascending order and re-
labelled x(1) < ... < x(n). Then the pth quantile, 0 < p < 100,is given by

x(p) = x(k)

where k is the nearest integer to pn/100. Special cases include

Median m = x(50), the 50thquantile

Lower quartile q25 = x(25), the 25thquantile

Upper quartile q75 = x(75), the 75thquantile

Inter-quartile range IQR = q75 − q25

Sample minimum xmin = x(1)
Sample maximum xmax = x(n)
Sample range R = x(n) − x(1)

• Sample skewness

A =

n∑

i=1

(xi − x)3

n∑

i=1

(xi − x)2

• Sample kurtosis

K =

n
n∑

i=1

(xi − x)4

(
n∑

i=1

(xi − x)2

)2
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3.2.2 LINKING SAMPLE STATISTICS AND PROBABILITY MODELS.

Consider the discrete probability distribution defined on the set of observed sample outcomes
{x1, ..., xn}, by placing equal probability 1/n on each value, that is, the probability distribution
specified by mass function denoted f(n)

f(n)(x) =
1

n
x ∈ {x1, ..., xn} .

Then the expectation and variance of this probability distribution are given by

Ef(n)[X] =
n∑

i=1

xif(n)(xi) =
n∑

i=1

xi

{
1

n

}
=

1

n

n∑

i=1

xi = x V arf(n)[X] =
1

n

n∑

i=1

(xi − x)2 = S2

that is, the sample mean. Similarly, the variance of this probability distribution is equal to sample
variance. In fact, each of the summary statistics listed above can be viewed as a feature of the
probability distribution described by mass function f(n).

Now, consider this probability distribution as n increases to infinity. Then the sample mass func-
tion f(n) tends to a function f which can be regarded as the “true” mass/density function, and
the sample mean, variance, percentiles etc. tend to the true mean, variance, percentiles of the
distribution from which the data are generated. In practice, of course, n is always finite, and thus
the true distribution, true mean etc., cannot be known exactly. Therefore, we approximate the
true distribution by an appropriately chosen distribution (Poisson, Exponential, Normal etc.) with
parameters chosen to correspond to the observed sample properties.

3.2.3 GRAPHICAL SUMMARIES

The most common graphical summary technique is the histogram. Typically, the sample space X
is divided into a number of subsets X1, ...,XH , and the frequency with which a data value in the
sample is observed to lie in subset h = 1, ...,H is noted. This procedure leads to a set of counts
n1, ..., nH (where n1 + ...+ nH = n) which are then plotted on a graph as a set of bars, where the
hth bar has height nh and occupies the region of X corresponding to Xh.

The histogram again aims to approximate the “true” probability distribution generating the data
by the observed sample distribution. It illustrates graphically the concepts of location, mode,
spread and skewness and general shape features that have been recognized as important features
of probability distributions.

3.2.4 OUTLIERS

Sometimes, for example due to slight variation in experimental conditions, one or two values in
the sample may be much larger or much smaller in magnitude than the remainder of the sample.
Such observations are termed outliers and must be treated with care, as they can distort the
impression given by some of the summary statistics. For example, the sample mean and variance
are extremely sensitive to the presence of outliers in the sample. Other summary statistics, for
example those based on sample percentiles, are less sensitive to outliers. Outliers can usually be
identified by inspection of the raw data, or from careful plotting of histograms.



3.3. PARAMETER ESTIMATION 43

3.3 PARAMETER ESTIMATION

It is often of interest to draw inference from data regarding the parameters of the proposed proba-
bility distribution; recall that many aspects of the standard distributions studied are controlled by
the distribution parameters. It is therefore important to find a simple and yet general technique
for parameter estimation

3.3.1 MAXIMUM LIKELIHOOD ESTIMATION

Maximum Likelihood Estimation is a systematic technique for estimating parameters in a proba-
bility model from a data. Suppose a sample x1, ..., xn has been obtained from a probability model
specified by mass or density function f(x; θ) depending on parameter(s) θ lying in parameter space
Θ. The maximum likelihood estimate or m.l.e. is produced as follows;

STEP 1 Write down the likelihood function, L(θ), where

L(θ) =
n∏

i=1

f(xi; θ)

that is, the product of the n mass/density function terms (where the ith term is the mass/density
function evaluated at xi) viewed as a function of θ.

STEP 2 Take the natural log of the likelihood, and collect terms involving θ.

STEP 3 Find the value of θ ∈ Θ, θ̂, for which logL(θ) is maximized, for example by differentiation.
If θ is a single parameter, find θ̂ by solving

d

dθ
{logL(θ)} = 0

in the parameter space Θ. If θ is vector-valued, say θ = (θ1, ..., θd), then find θ̂ = (θ̂1, ..., θ̂d) by
simultaneously solving the d equations given by

∂

∂θj
{logL(θ)} = 0 j = 1, ..., d

in parameter space Θ.

Note that, if parameter space Θ is a bounded interval, then the maximum likelihood estimate may
lie on the boundary of Θ.

STEP 4 Check that the estimate θ̂ obtained in STEP 3 truly corresponds to a maximum in the
(log) likelihood function by inspecting the second derivative of logL(θ) with respect to θ. If

d2

dθ2
{logL(θ)} < 0

at θ = θ̂, then θ̂ is confirmed as the m.l.e. of θ (other techniques may be used to verify that the
likelihood is maximized at θ̂).
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This procedure is a systematic way of producing parameter estimates from sample data and a
probability model; it can be shown that such an approach produces estimates that have good
properties. After they have been obtained, the estimates can be used to carry out prediction of
behaviour for future samples.

EXAMPLE A sample x1, ..., xn is modelled by a Poisson distribution with parameter denoted λ

f(x; θ) ≡ f(x; λ) =
λx

x!
e−λ x = 0, 1, 2, ...

for some λ > 0.

STEP 1 Calculate the likelihood function L(λ). For λ > 0,

L(λ) =
n∏

i=1

f(xi;λ) =
n∏

i=1

{
λxi

xi!
e−λ

}
=

λx1+...+xn

x1!....xn!
e−nλ

STEP 2 Calculate the log-likelihood logL(λ).

logL(λ) =
n∑

i=1

xi logλ− nλ−
n∑

i=1

log(xi!)

STEP 3 Differentiate logL(λ) with respect to λ, and equate the derivative to zero.

d

dλ
{logL(λ)} = 1

λ

n∑

i=1

xi − n = 0 =⇒ λ̂ =
1

n

n∑

i=1

xi = x

STEP 4 Check that the second derivative of logL(λ) with respect to λ is negative at λ = λ̂.

d2

dλ2
{logL(λ)} = − 1

λ2

n∑

i=1

xi < 0 atλ = λ̂

3.3.2 METHOD OF MOMENTS ESTIMATION

Suppose that X1, ...,Xn is a random sample from a probability distribution with mass/density
function fX that depends on vector parameter θ of dimension k, and suppose that a sample x1, ..., xn
has been observed. Let the jth theoretical moment of fX be denoted µj , that is, let

µj = EfX
[
Xj

]

and let the jth sample moment, denoted mj be defined for j = 1, ..., k by

mj =
1

n

n∑

i=1

xji

Then mj is an estimate of µj , and

Mj =
1

n

n∑

i=1

Xji

is an estimator of µj. This method of estimation involvesmatching the theoretical moments
to the sample moments, giving (in most cases) k equations in the k elements of vector θ which
may be solved simultaneously to find the parameter estimates. Intuitively, and recalling the Weak
Law of Large Numbers, it is reasonable to suppose that there is a close relationship between the
theoretical properties of a probability distribution, and large sample derived estimates; for example,
we know that, for large n, the sample mean converges in probability to the theoretical expectation.
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3.4 SAMPLING DISTRIBUTIONS

Maximum likelihood can be used systematically to produce estimates from sample data. Consider
the following example; if a sample of data x1, ..., xn are believed to have a Normal distribution with
parameters µ and σ2, then the maximum likelihood estimates based on the sample are given by

µ̂ = x σ̂2 = S2 =
1

n

n∑

i=1

(xi − x)2

If five samples of eight observations are collected, however, we might get five different sample means

x1 x2 x3 x4 x5 x6 x7 x8 x
10.4 11.2 9.8 10.2 10.5 8.9 11.0 10.3 10.29
9.7 12.2 10.4 11.1 10.3 10.2 10.4 11.1 10.66
12.1 7.9 8.6 9.6 11.0 11.1 8.8 11.7 10.10
10.0 9.2 11.1 10.8 9.1 12.3 10.3 9.7 10.31
9.2 9.7 10.8 10.3 8.9 10.1 9.7 10.4 9.89

and so the estimate µ̂ of µ is different each time. We attempt to understand how x varies by
calculating the probability distribution of the corresponding estimator, X.

The estimator X is a random variable, the value of which is unknown before the experiment
is carried out. As a random variable, X has a probability distribution, known as the sampling
distribution. The form of this distribution can often be calculated, and used to understand how
X varies. In the case where the sample data have a Normal distribution, the following theorem
gives the sampling distributions of the maximum likelihood estimators;

THEOREM If X1, ...,Xn are i.i.d. N(µ, σ2) random variables, then

(I) X ∼ N

(
µ,

σ2

n

)

(II)
1

σ2

n∑

i=1

(Xi −X)2 =
nS2

σ2
=

(n− 1)s2

σ2
∼ χ2n−1

(III) Xand S2are independent random variables.

Interpretation : This theorem tells us how the sample mean and variance will behave if the
original random sample is assumed to come from a Normal distribution. In particular, it tells us
that

E
[
X

]
= µ E[S2] =

n− 1

n
σ2 E[s2] = σ2

If we believe that X1, ...,X10 are i.i.d random variables from a Normal distribution with parameters
µ = 10.0 and σ2 = 25, then X has a Normal distribution with parameters µ = 10.0 and σ2 =
25/10 = 2.5.

The result will be used to facilitate formal tests about model parameters. For example, given
a sample of experimental, we wish to answer specific questions about parameters in a proposed
probability model.
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3.5 HYPOTHESIS TESTING

Given a sample x1, ..., xn from a probability model f(x; θ) depending on parameter θ, we can
produce an estimate θ̂ of θ, and in some circumstances understand how θ̂ varies for repeated
samples. Now we might want to test, say, whether or not there is evidence from the sample that
true (but unobserved) value of θ is not equal to a specified value. To do this, we use estimate of θ,
and the corresponding estimator and its sampling distribution, to quantify this evidence.

In particular, we concentrate on data samples that we can presume to have a normal distribution,
and utilize the Theorem from the previous section. We will look at two situations, namely one
sample and two sample experiments. Suppose that X1, ...,Xn ∼ N

(
µ, σ2

)
(one sample) and

X1, ...,Xn ∼ N(µX , σ
2
X), Y1, ..., Yn ∼ N(µY , σ

2
Y ) (two sample)

• ONE SAMPLE Possible tests of interest: µ = c1, σ = c2

• TWO SAMPLE Possible tests of interest: µX = µY , σX = σY

3.5.1 TESTS FOR NORMAL DATA I - THE Z-TEST (σ KNOWN)

If X1, ...,Xn ∼ N(µ, σ2) are the i.i.d. outcome random variables of n experimental trials, then

X ∼ N

(
µ,

σ2

n

)
and

nS2

σ2
∼ χ2n−1

with X and S2 statistically independent. Suppose we want to test the hypothesis that µ = c, for
some specified constant c, (where, for example, c = 20.0) is a plausible model; more specifically, we
want to test the hypothesis H0 : µ = c against the hypothesis H1 : µ = c, that is, we want to test
whether H0 is true, or whether H1 is true. Now, we know that, in the case of a Normal sample,
the distribution of the estimator X is Normal, and

X ∼ N

(
µ,

σ2

n

)
=⇒ Z =

X − µ

σ/
√
n
∼ N (0, 1)

where Z is a random variable. Now, when we have observed the data sample, we can calculate
X, and therefore we have a way of testing whether µ = c is a plausible model; we calculate x from
x1, ..., xn, and then calculate

z =
x− c

σ/
√
n

If H0 is true, and µ = c, then the observed z should be an observation from anN(0, 1) distribution
(as Z ∼ N(0, 1)), that is, it should be near zero with high probability. In fact, z should lie between
-1.96 and 1.96 with probability 1− α = 0.95, say, as

P [−1.96 ≤ Z < 1.96] = Φ(1.96)− Φ(−1.96) = 0.975− 0.025 = 0.95

.If we observe z to be outside of this range, then there is evidence that H0 is not true.
Alternatively, we could calculate the probability p of observing a z value that ismore extreme

than the z we did observe; this probability is given by

p =

{
2Φ(z) z < 0
2(1− Φ(z)) z ≥ 0

If p is very small, say p ≤ α = 0.05, then again. there is evidence that H0 is not true. In
summary, we need to assess whether z is a surprising observation from an N(0, 1) distribution -
if it is, then we can reject H0.



3.5. HYPOTHESIS TESTING 47

Figure 3.1: CRITICAL REGIONS IN A Z-TEST (taken from Schaum’s ELEMENTS OF STATIS-
TICS II, Bernstein & Bernstein)

3.5.2 HYPOTHESIS TESTING TERMINOLOGY

There are five crucial components to a hypothesis test, namely

• TEST STATISTIC

• NULL DISTRIBUTION

• SIGNIFICANCE LEVEL, denoted α

• P-VALUE, denoted p.

• CRITICAL VALUE(S)

In the Normal example given above, we have that

• z is the test statistic

• The distribution of random variable Z if H0 is true is the null distribution

• α = 0.05 is the significance level of the test (we could use α = 0.01 if we require a “stronger”
test)

• p is the p-value of the test statistic under the null distribution

• The solution CR of Φ(CR) = 1−α/2 (CR = 1.96 above) gives the critical values of the test
±CR.
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EXAMPLE : A sample of size 10 has sample mean x = 19.7. To test the hypothesis

H0 : µ = 20.0
H1 : µ = 20.0

under the assumption that the data follow a Normal distribution with σ = 1.0. We have

z =
19.7− 20.0

1/
√
10

= −0.95

which lies between the critical values ±1.96, and therefore we have no reason to reject H0. Also,
the p-value is given by p = 2Φ(−0.95) = 0.342, which is greater than α = 0.05, which confirms that
we have no reason to reject H0.

3.5.3 TESTS FOR NORMAL DATA II - THE T-TEST (σ UNKNOWN)

In practice, we will often want to test hypotheses about µ when σ is unknown. We cannot perform
the Z-test, as this requires knowledge of σ to calculate the z statistic.

We proceed as follows; recall that we know the sampling distributions of X and s2, and that the
two estimators are statistically independent. Now, from the properties of the Normal distribution,
if we have independent random variables Z ∼ N(0, 1) and Y ∼ χ2ν , then we know that random
variable T defined by

T =
Z√
Y/ν

has a Student-t distribution with ν degrees of freedom. Using this result, and recalling the sampling
distributions of X and s2, we see that

T =

(
X − µ

)
/ (σ/

√
n)√

(n− 1)s2

σ2(n− 1)

=
(X − µ)

s/
√
n
∼ tn−1

and T has a Student-t distribution with n− 1 degrees of freedom, denoted St(n− 1). Thus we can
repeat the procedure used in the σ known case, but use the sampling distribution of T rather than
that of Z to assess whether the test statistic is “surprising” or not. Specifically, we calculate

t =
(x− µ)

s/
√
n

and find the critical values for a α = 0.05 significance test by finding the ordinates corresponding
to the 0.025 and 0.975 percentiles of a Student-t distribution, St(n − 1) (rather than a N(0, 1))
distribution.

EXAMPLE : A sample of size 10 has sample mean x = 19.7. and s2 = 0.782. To test

H0 : µ = 20.0
H1 : µ = 20.0

under the assumption that the data follow a Normal distribution with σ unknown. We have test
statistic t given by

t =
19.7− 20.0

0.78/
√
10

= −1.22.
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Figure 3.2: Student-t distribution for different values of the degrees of freedom.

The upper critical value CR is obtained by solving FSt(n−1)(CR) = 0.975, where FSt(n−1) is the
c.d.f. of a Student-t distribution with n − 1 degrees of freedom; here n = 10, so we can use the
statistical tables to find CR = 2.262, and not that, as Student-t distributions are symmetric the
lower critical value is −CR. Thus t lies between the critical values, and therefore we have no reason
to reject H0. The p-value is given by

p =

{
2FSt(n−1)(t) t < 0
2(1− FSt(n−1)(t)) t ≥ 0

so here, p = 2FSt(n−1)(−1.22) which we can find to give p = 0.253; this confirms that we have no
reason to reject H0.

3.5.4 TESTS FOR NORMAL DATA III - TESTING σ.

The Z-test and T-test are both tests for the parameter µ. Suppose that we wish to test a hypothesis
about σ, for example

H0 : σ
2 = c

H1 : σ
2 = c

We construct a test based on the estimate of variance, s2. In particular, we saw in a previous
Theorem that the random variable Q, defined by

Q =
(n− 1)s2

σ2
∼ χ2n−1

if the data have an N(µ, σ2) distribution. Hence if we define test statistic q by

q =
(n− 1)s2

c
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Figure 3.3: Chisquared distribution for different values of the degrees of freedom.

then we can compare q with the critical values derived from a χ2n−1 distribution; we look for the
0.025 and 0.975 quantiles - note that the Chi-squared distribution is not symmetric, so we need
two distinct critical values.

In the above example, to test

H0 : σ
2 = 1.0

H1 : σ
2 = 1.0

we compute test statistic

q =
(n− 1)s2

c
=

90.782

1.0
= 5.43.75

and compare with

CR1 = Fχ2n−1(0.025) =⇒ CR1 = 2.700 CR2 = Fχ2n−1(0.975) =⇒ CR2 = 19.022

so q is not a surprising observation from a χ2n−1 distribution, and hence we cannot reject H0.

3.5.5 TWO SAMPLE TESTS

It is straightforward to extend the ideas from the previous sections to two sample situations where
we wish to compare the distributions underlying two data samples. Typically, we consider sample
one, x1, ..., xnX , from a N(µX , σ

2
X) distribution, and sample two, y1, ..., ynY , independently from a

N(µY , σ
2
Y ) distribution, and test the equality of the parameters in the two models. Suppose that

the sample mean and sample variance for samples one and two are denoted (x, s2X) and (ȳ, s2Y )
respectively.
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1. First, consider testing the hypothesis

H0 : µX = µY
H1 : µX = µY

when σX = σY = σ is known. Now, we have from the sampling distributions theorem we
have

X ∼ N

(
µX ,

σ2

nX

)
Y ∼ N

(
µY ,

σ2

nY

)
=⇒ X − Y ∼ N

(
0,

σ2

nX
+

σ2

nY

)

and hence

Z =
X − Y

σ

√
1

nX
+

1

nY

∼ N(0, 1)

giving us a test statistic z defined by

z =
x− y

σ

√
1

nX
+

1

nY

which we can compare with the standard normal distribution; if z is a surprising observation
from N(0, 1), and lies outside of the critical region, then we can reject H0. This procedure is
the Two Sample Z-Test.

2. If σX = σY = σ is unknown, we parallel the one sample T-test by replacing σ by an estimate
in the two sample Z-test. First, we obtain an estimate of σ by “pooling” the two samples;
our estimate is the pooled estimate, s2P , defined by

s2P =
(nX − 1)s2X + (nY − 1)s2Y

nX + nY − 2

which we then use to form the test statistic t defined by

t =
x− y

sP

√
1

nX
+

1

nY

It can be shown that, ifH0 is true then t should be an observation from a Student-t distribution
with nX +nY − 2 degrees of freedom. Hence we can derive the critical values from the tables
of the Student-t distribution.

3. If σX = σY , but both parameters are known, we can use a similar approach to the one above
to derive test statistic z defined by

z =
x− y√
σ2X
nX

+
σ2Y
nY

which has an N(0, 1) distribution if H0 is true.
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4. If σX = σY , but both parameters are unknown, we can use a similar approach to the one
above to derive test statistic t defined by

z =
x− y√
s2X
nX

+
s2Y
nY

for which the distribution if H0 is true is not analytically available, but can be adequately
approximated by a Student (m) distribution, where

m =
(wX + wY )

2

(
w2X

nX − 1
+

w2Y
nY − 1

)

where

wX =
s2X
nX

wY =
s2Y
nY

Clearly, the choice of test depends on whether σX = σY or otherwise; we may test this hypothesis
formally; to test

H0 : σX = σY
H1 : σX = σY

we compute the test statistic q = s2X/s
2
Y , which has a null distribution known as the Fisher

or F distribution with (nX − 1, nY − 1) degrees of freedom; this distribution can be denoted
F (nX − 1, nY − 1), and its quantiles are tabulated. Hence we can look up the 0.025 and 0.975
quantiles of this distribution (the F distribution is not symmetric), and hence define the critical
region; informally, if the test statistic q is very small or very large, then it is a surprising observation
from the F distribution and hence we reject the hypothesis of equal variances.
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Figure 3.4 : F distribution for different values of the degrees of freedom.
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3.5.6 ONE-SIDED AND TWO-SIDED TESTS

So far we have considered hypothesis tests of the form

H0 : µ = c
H1 : µ = c

which is referred to as a two-sided test, that is, the alternative hypothesis is supported by an
extreme test statistic in either tail of the distribution. We may also consider a one-sided test
of the form

H0 : µ = c
H1 : µ > c

or
H0 : µ = c
H1 : µ < c

.

Such a test proceeds exactly as the two-sided test, except that a significant result can only occur
in the right (or left) tail of the null distribution, and there is a single critical value, placed, for
example, at the 0.95 (or 0.05) probability point of the null distribution.

3.5.7 CONFIDENCE INTERVALS

The procedures above allow us to test specific hypothesis about the parameters of probability
models. We may complement such tests by reporting a confidence interval, which is an interval
in which we believe the “true” parameter lies with high probability. Essentially, we use the sampling
distribution to derive such intervals. For example, in a one sample Z-test, we saw that

Z =
X − µ

σ/
√
n
∼ N(0, 1)

that is, that, for critical values ±CR in the test at the 5 % significance level

P [−CR ≤ Z ≤ CR] = P

[
−CR ≤

X − µ

σ/
√
n
≤ CR

]
= 0.95

Now, from tables we have CR = 1.96, so re-arranging this expression we obtain

P

[
X − 1.96

σ√
n
≤ µ ≤ X + 1.96

σ√
n

]
= 0.95

from which we deduce a 95 % Confidence Interval for µ based on the sample mean x of

x± 1.96
σ√
n

We can derive other confidence intervals (corresponding to different significance levels in the equiv-
alent tests) by looking up the appropriate values of the critical values. The general approach for
construction of confidence interval for generic parameter θ proceeds as follows. From the modelling
assumptions, we derive a pivotal quantity, that is, a statistic, TPQ, say, (usually the test statistic
random variable) that depends on θ, but whose sampling distribution is “parameter-free” (that is,
does not depend on θ). We then look up the critical values CR1 and CR2 , such that

P [CR1 ≤ TPQ ≤ CR2 ] = 1− α
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where α is the significance level of the corresponding test. We then rearrange this expression to
the form

P [c1 ≤ θ ≤ c2] = 1− α

where c1 and c2 are functions of CR1 and CR2 respectively. Then a 1−α % Confidence Interval for
θ is [c1, c2].

SUMMARY

For the tests discussed in previous sections, the calculation of the form of the confidence intervals
is straightforward: in each case, CR1 and CR2 are the α/2 and 1−α/2 quantiles of the distribution
of the pivotal quantity.

ONE SAMPLE TESTS

Test PivotalQuantity TPQ Null Distn. Parameter Confidence Interval

Z − TEST Z =
X − µ

σ/
√
n

N(0, 1) µ x± CR σ/
√
n

T − TEST T =
X − µ

s/
√
n

St(n− 1) µ x± CR s/
√
n

Q− TEST Q =
(n− 1)s2

σ2
χ2n−1 σ2

[
(n− 1)s2

CR2
:
(n− 1)s2

CR1

]

TWO SAMPLE TESTS

Test PivotalQuantity TPQ Null Distn. Parameter Confidence Interval

Z − TEST (1) Z =
(X − µX)− (Y − µY )

σ

√
1

nX
+

1

nY

N(0, 1) µX − µY (x− y)±CR σ

√
1

nX
+

1

nY

T − TEST T =
(X − µX)− (Y − µY )

sP

√
1

nX
+

1

nY

St(nX + nY − 2) µX − µY (x− y)±CR sP

√
1

nX
+

1

nY

Z − TEST (2) Z =
(X − µX)− (Y − µY )√

σ2X
nX

+
σ2Y
nY

N(0, 1) µX − µY (x− y)±CR

√
σ2X
nX

+
σ2Y
nY

Q− TEST Q =
s2X/σ

2
X

s2Y /σ
2
Y

F (nX − 1, nY − 1)
σ2X
σ2Y

[
s2X

CR2s
2
Y

:
s2X

CR1s
2
Y

]
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3.6 MODEL TESTING AND VALIDATION

Techniques used for estimation and hypothesis testing allow specific and quantitative questions
about the parameters in a probability model to be posed and resolved on the basis of a collection of
sample data x1, ..., xn. However, the question as to the validity of the assumed probability model
(for example, Binomial, Poisson, Exponential, Normal etc.) has yet to be addressed.

3.6.1 PROBABILITY PLOTS

The probability plotting technique involves comparing predicted and observed behaviour by com-
paring quantiles of the proposed probability distribution with sample quantiles. Suppose that a
sample of data of size n are to be modelled using a proposed probability model with c.d.f. FX
which possibly depends on unknown parameter(s) θ. The sample data are first sorted into ascend-
ing order, and then the ith datum, xi, corresponds to the 100i/(n + 1)th quantile of the sample.
Now, the equivalent hypothetical quantile of the distribution, qi is found as the solution of

FX(qi) =
i

n+ 1
i = 1, ..., n.

If the model encapsulated in FX is an acceptable model for the sample data, then for large n,
xi ≈ qi, so a plot of {(qi, xi) : i = 1, ..., n} should be a straight line through the origin with slope 1.
Hence the validity of FX as a model for the sample data can be assessed through such a plot.

EXAMPLE For the Exponential(1) model, FX is given by

FX(x) = 1− e−x x ≥ 0

so the probability plot consists of examining {(qi, xi) : i = 1, ..., n} where

1− e−qi =
i

n+ 1
=⇒ qi = − log

{
1− i

n+ 1

}

EXAMPLE For the N(0, 1) model, FX ≡ Φ is only available numerically (for example via statis-
tical tables). Here the probability plot consists of examining {(qi, xi) : i = 1, ..., n} where

Φ(qi) =
i

n+ 1
=⇒ qi = Φ−1

(
i

n+ 1

)

EXAMPLE For the Exponential(λ) model, we plot {(qi, xi) : i = 1, ..., n} where

FX(qi) = 1− e−λqi =
i

n+ 1
=⇒ qi = −

1

λ
log

{
1− i

n+ 1

}
.

Hence, if we define q∗i by

q∗i = − log

{
1− i

n+ 1

}

then if the model is correct, a plot of {(q∗i , xi) : i = 1, ..., n} should be approximately a straight
line through the origin with slope 1/λ; hence λ can be estimated from this plot by using linear
regression.
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EXAMPLEFor theN(µ, σ2) model, is again only available numerically (for example via statistical
tables). Here the probability plot consists of examining {(qi, xi) : i = 1, ..., n} where

FX(qi) = Φ

(
qi − µ

σ

)
=

i

n+ 1
=⇒ qi = µ+ σΦ−1

(
i

n+ 1

)
.

Hence, if we define q∗i by

q∗i = Φ−1
(

i

n+ 1

)

then if the model is correct, a plot of {(q∗i , xi) : i = 1, ..., n} should be approximately a straight
line with intercept µ and slope σ; hence µ, σ can again be estimated from this plot by using linear
regression.

3.6.2 THE CHI-SQUARED GOODNESS-OF-FIT TEST

The problem of testing a hypothesis as to whether a data sample x1, ..., xn is well-modelled by a
specified probability distribution can be approached from a “goodness-of-fit” perspective.

Suppose that the data are recorded as the number of observations, Oi, say in a sample of size
n that fall into each of k categories or “bins”. Suppose that under the hypothesized model with
mass/density function fX or c.d.f. FX , the data follow a specific probability distribution specified
by probabilities {pi : i = 1, ..., k}. These probabilities can be calculated directly from fX or FX ,
possibly after parameters in the model have been estimated using maximum likelihood. Then, if
the hypothesized model is correct, Ei = npi observations would be expected to fall into category i.
An intuitively sensible measure of the goodness-of-fit of the data to the hypothesized distribution
is given by the chi-squared statistic

χ2 =
k∑

i=1

(Oi−Ei)2
Ei

A formal hypothesis test of model adequacy can be carried out in the usual framework; here the chi-
squared statistic is the test statistic, and the null distribution (the distribution of the test statistic
if the hypothesis is TRUE) is approximately a chi-squared distribution with k−d−1 degrees of
freedom, where d is the number of parameters in fX or FX that were estimated in order calculate
the probabilities p1, ..., pk.
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EXAMPLE : Testing the fit of a Poisson distribution

An early experiment into the properties of radioactive materials involved counting the number
of alpha particles emitted from a radioactive source in 2612 consecutive 7.5 second intervals. A
total of 10126 particles were counted, and the observed frequencies for each of the numbers of
counts (per 7.5s) from 0 to 12 were recorded.

Count Oi pi Ei (Oi −Ei)
2/Ei

0 57 0.021 54 0.167
1 204 0.080 210 0.171
2 383 0.156 407 1.415
3 525 0.201 525 0.000
4 532 0.195 510 0.949
5 408 0.151 395 0.428
6 273 0.098 255 1.271
7 139 0.054 141 0.028
8 49 0.026 68 5.309
9 27 0.011 30 0.300
10 10 0.004 11 0.091
11 4 0.002 4 0.000
12 2 0.000 1 1.000
>12 0 0.001 1 1.000

Total 2612 1.000 2612 12.129

To test the hypothesis that the data follow a Poisson distribution, a chi-squared test can be per-
formed. First, we estimate Poisson parameter λ by its m.l.e., which is λ̂ = x = 10126/2612 = 3.877.
Secondly, we calculate probabilities pi using the Poisson formula. Thirdly, we calculate the theo-
retical (expected) frequencies Ei = npi for each category. Finally, we calculate the χ2 statistic as
the sum of the (standardized) squared differences between observed and expected frequencies.

In this case, χ2 = 12.129. To complete the test we find that the 95th percentile of a Chi-squared
distribution with k−1−1 = 12 degrees of freedom is 21.03. This implies that the χ2 statistic would
only be surprising at a significance level of 0.05 if it was larger than 21.03. Here, as χ2 = 12.129,
and therefore not surprising. Hence there is no evidence to indicate that the data are not from a
Poisson distribution.

Clearly, the categorization is arbitrary, and several of the categories in example 1 could be
combined. As a general rule, the categories should be chosen so that there is at least five observed
counts in each.

Hence, to carry out a Chi-squared goodness of fit test, we use the following logic. If a given
hypothesis is true, it can be shown that the chi-squared statistic χ2 for a sample of data has a
particular Chi-squared distribution. If χ2 takes a value that is surprising or unlikely under that
probability distribution (for example if its value lies in the extreme right-hand tail and is larger,
say, than the 95th percentile of the distribution) it is very likely that the hypothesis is false and
should be rejected.
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3.7 HYPOTHESIS TESTING EXTENSIONS

In this section, we examine extensions to the hypothesis testing methods described above: although
the methods differ slightly, the general approach remains the unchanged. We proceed using the
same strategy, outlined below, For a data sample x1, ..., xn, with corresponding random variables
X1, ...,Xn, we

1. consider a pair of competing hypotheses, H0 and H1

2. define a suitable test statistic T = T (X1, ...,Xn) (that is, some function of the original
random variables; this will define the test statistic), and a related pivotal random variable
TPQ = TPQ(X)

3. assume that H0 is true, and compute the sampling distribution of T , fT or FT ; this is the
null distribution

4. compute the observed value of T , t = T (x1, ..., xn); this is the test statistic

5. assess whether t is a surprising observation from the distribution fT . If it is surprising, we
have evidence to reject H0; if it is not surprising, we cannot reject H0

This strategy can be applied to more complicated normal examples, and also non-normal and
non-parametric testing situations. It is a general strategy for assessing the statistical evidence for
or against a hypothesis.

3.7.1 ANALYSIS OF VARIANCE

The first extension we consider still presumes a normality assumption for the data, but extends
the ideas from Z and T tests, which compare at most two samples, to allow for the analysis of any
number of samples. Analysis of variance orANOVA is used to display the sources of variability
in a collection of data samples. The ANOVA F-test compares variability between samples with
the variability within samples.

ONE-WAY ANOVA
The T-test can be extended to allow a test for differences between more than two data samples.

Suppose there are K samples of sizes n1, ..., nK from different populations. The model can be
represented as follows: let ykj be the jth observation in the kth sample, then

ykj = µk + εkj

for k = 1, ...,K, and εkj ∼ N
(
0, σ2

)
. This model assumes that

Ykj ∼ N
(
µk, σ

2
)

and that the expectations for the different samples are different. We can view the data as a table
comprising K columns, with each column corresponding to a sample.

To test the hypothesis that each population has the same mean, that is, the hypotheses

H0 : µ1 = µ2 = ... = µK

H1 : notH0

an Analysis of Variance (ANOVA) F-test may be carried out.
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To carry out a test of the hypothesis, the following ANOVA table should be completed;

Source D.F. Sum of squares Mean square F

Between Samples K − 1 FSS FSS/(K − 1)
FSS/(K − 1)

RSS/(n−K)

Within Samples n−K RSS RSS/(n−K)

Total n− 1 TSS

where n = n1 + ...+ nK , and

TSS =
K∑

k=1

nk∑

j=1

(ykj − y..)
2 RSS =

K∑

k=1

nk∑

j=1

(ykj − yk)
2 FSS =

K∑

k=1

nk (yk − y..)
2

where TSS is the total sum-of-squares (i.e. total deviation from the overall data mean y.)RSS is the
residual sum-of-squares (i.e. sum of deviations from individual sample means yk, k = 1, ...,K) and
FSS is the fitted sum-of-squares (i.e. weighted sum of deviations of sample means from the overall
data mean, with weights equal to number of data points in the individual samples) Note:that

TSS = FSS +RSS

If the F statistic is calculated in this way, and compared with an F distribution with parameters
K − 1, n−K, the hypothesis that all the individual samples have the same mean can be tested.

EXAMPLE Three genomic segments were used to studied in order to discover whether the
distances (in kB) between successive occurrences of a particular motif were substantially different.
Several measurements were taken using for each segment;

Method

SEGMENT A SEGMENT B SEGMENT C

42.7 44.9 41.9
45.6 48.3 44.2
43.1 46.2 40.5
41.6 43.7

41.0

Mean 43.25 46.47 42.26
Variance 2.86 2.94 2.66

For these data, the ANOVA table is as follows;

Source D.F. Sum of squares Mean square F

SEGMENTS 2 34.1005 17.0503 6.11

Residual 9 25.1087 2.7899

Total 11 59.2092

and the F statistic must be compared with an F2,9 distribution. For a significance test at the 0.05
level, F must be compared with the 95th percentile (in a one-sided test) of the F2,9 distribution.
This value is 4.26. Therefore, the F statistic is surprising, given the hypothesized model, and
therefore there is evidence to reject the hypothesis that the segments are identical.
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TWO-WAY ANOVA
One-way ANOVA can be used to test whether the underlying means of several groups of ob-

servations are equal Now consider the following data collection situation Suppose there are K
treatments, and L groups of observations that are believed to have different responses, that all
treatments are administered to all groups, and measurement samples of size n are made for each of
the K × L combinations of treatments × groups. The experiment can be represented as follows:
let yklj be the jth observation in the kth treatment on the lth group, then

yklj = µk + δl + εklj

for k = 1, ...,K, l = 1, ..., L, and again εklj ∼ N
(
0, σ2

)
. This model assumes that Ykj ∼

N
(
µk + δl, σ

2
)
and that the expectations for the different samples are different. We can view

the data as a 3 dimensional-table comprising K columns and L rows, with n observations for each
column × row combination, corresponding to a sample.

It is possible to test the hypothesis that each treatment, and/or that each group has the
same mean, that is, the two null hypotheses

H0 : µ1 = µ2 = ... = µK

H0 : δ1 = δ2 = ... = δK

against the alternative H1 :not H0 in each case. For these tests, a Two-way Analysis of
Variance (ANOVA) F-test may be carried out. The Two-Way ANOVA table is computed as
follows

Source D.F. Sum of squares Mean square F

TREATMENTS K − 1 FSS1 FSS1/(K − 1)
FSS1/(K − 1)

RSS/(R+ 1)

GROUPS L− 1 FSS2 FSS2/(L− 1)
FSS2/(L− 1)

RSS/(R+ 1)

Residual R+ 1 RSS RSS/(R+ 1)

Total N − 1 TSS

where N = K ×L× n, R = N − L−K. and again

TSS = FSS1 + FSS2 +RSS.

In the table below, there are K = 6 Treatments, and L = 3 Groups, and n = 1

I II III GROUP totals

1 0.96 0.94 0.98 2.88
2 0.96 0.98 1.01 2.95
3 0.85 0.87 0.86 2.58
4 0.86 0.84 0.90 2.60
5 0.86 0.87 0.89 2.62
6 0.89 0.93 0.92 2.74

TREATMENT totals 5.38 5.43 5.56 16.37

There are two natural hypotheses to test; first, do the TREATMENTS differ, and second, do the
GROUPS differ ?
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Two-way analysis of variance, with the rows and columns representing two source of variation
can be used to analyze such data. Two-way analysis of variance studies the variability due to

• the GROUPS effect, and

• the TREATMENTS effect,

and calibrates them against the average level of variability in the data overall.. For example, for
the data above we have the following two-way ANOVA table

Source D.F. Sum of squares Mean square F

TREATMENT 5 0.040828 0.0081656 31.54

GROUP 2 0.002878 0.001439 5.57

Residual 10 0.002589 0.0002589

Total 17 0.046295

The two F statistics can be interpreted as follows

• The first F statistic (F = 31.54) is the test statistic for the test of equal means in the
rows, that is, that there is no difference between TREATMENTS. This statistic must be
compared with an F5,10 distribution (the two degrees of freedom being the entries in the
degrees of freedom column in the specimens and residual rows of the ANOVA table). The
95th percentile of the F5,10 distribution is 3.33, and thus the test statistic is more extreme
than this critical value, and thus the hypothesis that each specimen has the same mean can
be rejected.

• The second F statistic, (F = 5.57), is the test statistic for the test of equal means in the
columns, that is, that there is no difference between GROUPS. This statistic must be
compared with an F2,10 distribution (the two degrees of freedom being the entries in the
degrees of freedom column in the methods and residual rows of the ANOVA table). The
95th percentile of the F2,10 distribution is 4.10, and thus the test statistic is more extreme
than this critical value, and thus the hypothesis that each method has the same mean can be
rejected.

If replicate data are available, it is possible also to fit an interaction, that is, to discover whether the
pattern of variability is significantly different amongst the different TREATMENTS or GROUPS.

ANOVA F tests allow the comparison of between group and within group variability

• significant between group variability indicates a systematic difference between the groups

• if the standardized ratio of between group variability to within group variability is
large, then there is evidence of a systematic variation.

• in effect, ANOVA compares estimates of variance components.
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3.7.2 NON-NORMAL DATA: COUNTS AND PROPORTIONS

A common form of non-normal data arise when the counts of numbers of “successes” or “failures”
that arise in a fixed number of trials. In this case, the Binomial distribution model is appropriate;

• in one sample testing, we model the number of successes,X, by assumingX ∼ Binomial(n, θ)
and test hypotheses about θ,

• in two sample testing, we assume that the number of successes in the two samples are
random variables X1 and X2, where X1 ∼ Binomial(n1, θ1) and X2 ∼ Binomial(n2, θ2), for
example test H0 : θ1 = θ2 against some alternative hypothesis (θ1 = θ2, θ1 > θ2 or θ1 < θ2)

ONE-SAMPLE TESTING:
In the one sample case, two alternative approaches can be adopted. The first is a so-called

exact test, where the distribution of the chosen test statistic under H0 : θ = c is computed exactly,
giving exact critical values and p-values. The second is a approximate test based on a Normal
approximation to the binomial distribution. For the exact test, we note that, if H0 is true, and
θ = c, then X ∼ Binomial(n, c) so the critical values in a two-sided test can be computed directly
by inspection of the Binomial(n, c) c.d.f; that is

FBIN (CR1 ;n, θ = c) = 0.025 CR2 = FBIN (0.975;n, θ = c)

where FBIN (−;n, θ) is the c.d.f. of the Binomial(n, θ) distribution

FBIN (x;n, θ) =

⌊x⌋∑

i=0

(
n

i

)
θi (1− θ)n−i

and ⌊x⌋ is the smallest whole number not greater than x. For the approximate test, we use the
fact that

X ∼ Binomial(n, θ) ≈ Normal (nθ, nθ (1− θ))

and hence random variable Z

Z =
X − nθ√
nθ(1− θ)

is approximately distributed as Normal(0, 1). For the approximate test of H0 : θ = c, we therefore
use the test statistic

z =
x− nc√
nc(1− c)

(x is the observed count) and compare this with the standard normal c.d.f.

TWO SAMPLE TESTING:
For a two sample test of H0 : θ1 = θ2, we use a similar normal approximation to the one-sample

case. If H0 is true, then there is a common probability θ determining the success frequency in
both samples, and the maximum likelihood estimate of θ is

θ̂ =
x1 + x2
n1 + n2

=
x

n
, say
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and thus it can be shown that the test statistic.

z =

x1
n1
− x2

n2√
(n1 + n2)

n1n2

(
x1 + x2
n1 + n2

) (
1− x1 + x2

n1 + n2

)

has an approximate standard Normal distribution.

3.7.3 CONTINGENCY TABLES AND THE CHI-SQUARED TEST

Contingency tables are constructed when a sample of data of size n are cross-classified according
to D factors, with factor d having kd categories, for d = 1, ...,D. The cross-classification can be
represented by a D-way table of k1 × k2 × ... × kD “cells”, with each cell containing a fraction of
the original data. Such a table when D = 2, k1 = 4 and k2 = 6 is illustrated below

COLUMN
1 2 3 4 5 6 Total

1 n11 n12 n13 n14 n15 n16 n1.
2 n21 n22 n23 n24 n25 n26 n2.

ROW 3 n31 n32 n33 n34 n35 n36 n3.
4 n41 n42 n43 n44 n45 n46 n4.

Total n.1 n.2 n.3 n.4 n.5 n.6 n

where
k1∑
i=1

k2∑
j=1

nij = n.It is often of interest to test whether row classification is independent of

column classification, as this would indicate independence between row and column factors. An
approximate test of this hypothesis can be carried out using a Chi-Squared Goodness-of-Fit
statistic; if the independence model is correct, the expected cell frequencies n̂ij can be calculated
as

n̂ij =
ni.n.j
n

i = 1, ..., k1, j = 1, ..., k2

where ni. is the total of cell counts in row i and n.j is the total of cell counts in column j, and that,
under independence, the χ2 test statistic

χ2 =

k1∑

i=1

k2∑

j=1

(nij − n̂ij)
2

n̂ij

has an approximate chi-squared distribution with (k1 − 1)(k2 − 1) degrees of freedom.

Another approximate test is based on a Likelihood Ratio (LR) statistic

LR = 2

k1∑

i=1

k2∑

j=1

nij log
nij
n̂ij

This statistic also has an approximate Chi-squared distribution χ2(k1−1)(k2−1)distribution, again
given that H0 is true.

We will see further analysis of count data in section (3.7.3) below, and in Chapter 4
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3.7.4 2× 2 TABLES

When k1 = k2 = 2, the contingency table reduces to a two-way binary classification

COLUMN
1 2 Total

1 n11 n12 n1.
ROW 2 n21 n22 n2.

Total n.1 n.2 n

In this case we can obtain some more explicit tests: one is again an exact test, the other is based
on a normal approximation. The chi-squared test described above is feasible, but other tests may
also be constructed:

• FISHER’S EXACT TEST FOR INDEPENDENCE

Suppose we wish to test for independence between the row and column variables of a
contingency table. When the data consist of two categorical variables, a contingency table
can be constructed reflecting the number of occurrences of each factor combination. Fisher’s
exact test assesses whether the classification according to one factor is independent of the
classification according to the other, that is the test is of the null hypothesis H0 that the
factors are independent, against the general alternative, under the assumption that the
row and column totals are fixed.

The data for such a table comprises the row and column totals (n1., n2., n.1, n.2) and the cell
entries (n11, n12, n21, n22). The test statistic can be defined as the upper left cell entry n11;
for the null distribution, we compute the probability of the observing all possible tables
with these row and column totals.. Under H0 this distribution is hypergeometric and the
probability of observing the table (n11, n12, n21, n22) is

p (n11) =

(
n1.
n11

)(
n2.
n21

)

(
n

n.1

) =
n1.!n.1!n2.!n.2!

n!n11!n12!n21!n22!

where n! = 1× 2× 3× ..× (n− 1)× n.

For the p-value, we need to assess the whether or not the observed table is surprising under
this null distribution; suppose we observe n11 = x, then we can compare p (x) with all p (y)
for all feasible y, that is y in the range max {0, n1. − (n− n.1)} ≤ y ≤ min {n, n.1}. We are
thus calculating the null distribution exactly given the null distribution assumptions and the
row and column totals; if the observed test statistic lies in the tail of the distribution, we can
reject the null hypothesis of independent factors.

• McNEMAR’S TEST FOR SYMMETRY IN PAIRED SAMPLES

In a 2 × 2 table representing paired data (where observations are, for example, matched
in terms of medical history or genotype, or phenotype) the usual chi-squared test is not
appropriate, and McNemar’s test can instead be used. Consider the following table for
a total of n matched pairs of observations, in which each individual in the pair has been
classified (or randomized to class) A or B, with one A one B in each pair, and then the
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outcome (disease status, survival status) recorded.

A
YES NO Total

YES n11 n12 n1.
B NO n21 n22 n2.

Total n.1 n.2 n

that is, n11 pairs were observed for which both A and B classified individuals had dis-
ease/survival status YES, whereas n12 pairs were observed for which the A individual had
status NO, but the B individual had status YES, and so on.

An appropriate test statistic here for a test of symmetry or “discordancy” in these results
(that is, whether the two classifications are significantly different in terms of outcome) is

χ2 =
(n12 − n21)

2

n12 + n21

which effectively measures how different the off-diagonal entries in the table are. This statistic
is an adjusted Chi-squared statistic, and has a χ21 distribution under the null hypothesis that
there is no asymmetry. Again a one-tailed test is carried out: “surprising” values of the test
statistic are large.

3.7.5 NON-PARAMETRIC TESTS

The standard test for the equality of expectations of two samples is the two-sample T-test. This
test is predicated on the assumption of normality of the underlying distributions. In many cases,
such an assumption is inappropriate, possible due to distributional asymmetry or the presence
of outliers, and thus other tests of the hypothesis of equality of population locations must be
developed.

Some of the standard non-parametric tests used in statistical analysis are described below: we
concentrate on two-sample tests for the most part. All of these tests can be found in good statistics
packages.

• THE MANN-WHITNEY-WILCOXON TEST

Consider two samples x1, ..., xn1 and y1, ..., yn2 . The Mann-Whitney-Wilcoxon test pro-
ceeds as follows; first, sort the pooled sample into ascending order. Add up the ranks of the
data from sample one to get u1 say. Repeat for sample two to get u2. Note that

u1 + u2 =
(n1 + n2)(n1 + n2 + 1)

2

The Mann-Whitney-Wilcoxon statistic is u1. It can be shown that, under the hypothesis that
the data are from populations with the equal medians, then u1 has an approximate normal
distribution with mean and variance

n1(n1 + n2 + 1)

2

n1n2(n1 + n2 + 1)

12

This is the non-parametric alternative to the two sample t-test.
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• THE KOLMOGOROV-SMIRNOV TEST

The two-sample Kolmogorov-Smirnov test is a non-parametric test for comparing two samples
via their empirical cumulative distribution function. For data x1, ..., xn, the empirical
c.d.f. is the function F̂ defined at x by

F̂ (x) =
c(x)

n
c(x) = “Numberofdata ≤ x”

Thus, for two samples, we have two empirical c.d.f.s F̂1(x) and F̂2(x). The (two-sided)
Kolmogorov-Smirnov test of the hypothesis that the two samples come from the same
underlying distribution, H0 : F1 = F2, is based on the statistic

T = max
x

∣∣∣F̂1 (x)− F̂2(x)
∣∣∣ .

It is easy to show that 0 ≤ T ≤ 1, but the null distribution of T is not available in closed
form. Fortunately, the p-value probability in the test for test statistic t, p =P[T > t] can be
obtained for various different sample sizes using statistical tables or packages.

• THE CHI-SQUARED GOODNESS-OF-FIT TEST

It is often required to test whether a sample can be well modelled using a particular distri-
bution; the chi-squared goodness-of-fit test is the most commonly used test. It is a
non-parametric test for which the null distribution can be well approximated by a Chi-squared
distribution. It is studied in more detail in the Model Validation section below.

• THE SHAPIRO-WILK TEST FOR NORMALITY

It is often required to test whether a sample of data are normally distributed; if they are,
then many of the tests described above can be utilized. The Shapiro-Wilk test can be used
to test this hypothesis; the test statistic is commonly denoted W , and critical and p- values
from its null distribution are available from tables or statistics packages.

• THE KRUSKAL-WALLIS TEST

The Kruskal-Wallis rank test is a nonparametric alternative to a one-way analysis of
variance. The null hypothesis is that the true location parameter is the same in each of the
samples. The alternative hypothesis is that at least one of the samples has a different location.
Unlike one-way ANOVA, this test does not require normality

• THE FRIEDMAN RANK SUM TEST

The Friedman rank sum test is a nonparametric alternative to a two-way analysis of vari-
ance. It is appropriate for data arising from an experiment in which exactly one observation
was collected from each experimental unit, or group, under each treatment. The elements of
the samples are assumed to consist of a treatment effect, plus a group effect, plus independent
and identically distributed residual errors
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3.7.6 EXACT TESTS

In the above sections, we have seen Chi-squared tests being used to test hypotheses about data.
These tests involved the construction of a chi-squared statistic, of the form

χ2 =
k∑

i=1

(Oi −Ei)
2

Ei

where Oi and Ei are the observed and expected/predicted counts in each of k (cross) classifications
or categories (see section (3.6.2) for further details).

The distribution of the test-statistic is typically approximated by a Chi-squared distribution
with an appropriately chosen degrees of freedom. This approximation is good when the sam-
ple size is large, but not good when the table is “sparse”, with some low (expected) cell entries
(under the null hypothesis). The approximation breaks down for small sample sizes due to the
inappropriateness of the Normal approximation referred to in section (3.7.2)

We have also seen two examples of Exact Tests: the exact binomial test in section (3.7.2)
and Fisher’s Exact Test in section (3.7.4). For these tests, we proceeded as follows, mimicking the
general hypothesis strategy outlined at the start of the section.

1. Write down a null hypothesis H0 and a suitable alternative hypothesis H1

2. Construct a test statistic T deemed appropriate for the hypothesis under study

3. Compute the null distribution of T , that is the sampling distribution of T if H0 is true, fT

4. Compare the observed value of T , t = T (x) for sample data x = (x1, ..., xn) with the null
distribution and assess whether the observed test statistic is a surprising observation from
fT ; if it is reject H0

Step 3 is crucial: for some tests (for example, one and two sample tests based on the Normal
distribution assumption), it is possible to find fT analytically for appropriate choices of T in Step
2. For others, such as the chi-squared goodness of fit and related tests, fT is only available
approximately. However, the null distribution (and hence the critical regions and p-value) can,
in theory, always be found : it is the probability distribution of the statistic T under the model
restriction imposed by the null hypothesis.

EXAMPLE Suppose a data sample are collected and believed to be from a Poisson (λ) distribu-
tion, and we wish to test H0 : λ = 2. We might regard the sample mean statistic T = X as an
appropriate test statistic. Then

FT (t; λ) = P [T ≤ t;λ] = P [X ≤ t; λ] = P

[
n∑

i=1

Xi ≤ nt;λ

]
= P [Y ≤ nt; λ]

where Y =
n∑
i=1

Xi. But elementary probability theory tells us that Y ∼ Poisson(nλ), so if H0 is

true, we have the null distribution c.d.f. as

FT (t;λ = 2) =

⌊nt⌋∑

x=0

e−22x

x!

and thus the critical values for the test, and the p-value, available numerically.
The main difficulty with exact tests is in the computation of FT (t;λ); this is rarely analytically

possible. However, we will see in a later section that this null c.d.f. can be approximated using
simulation methods, or Permutation Tests.
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3.8 POWER AND SAMPLE SIZE

In a statistical analysis, it seems reasonable that the sample size required to test specific null and
alternative hypotheses depends on how small of a difference we are trying to detect, how much
variability is inherent in our data, and how certain we want to be of our results. In this section
we will quantify the role of each of these aspects in experimental design.

In a classical test of H0 (null hypothesis) versus H1 (alternative hypothesis), there are four
possible outcomes, two of which are erroneous:

1. Do not reject H0 when is H0 true.

2. Reject H0 when H0 is false.

3. Reject H0 when H0 is true (Type I error).

4. Do not reject H0 when H0 is false (Type II error).

Recall that to construct a test, the distribution of the test statistic under H0 is used to find
a critical region which will ensure the probability of committing a type I error does not exceed
some predetermined significance level, α. The power, β, of the test is its ability to correctly
reject the null hypothesis, or

β = 1− P (TypeII Error),

which is based on the distribution of the test statistic under H1 .The required sample size is then
a function of

• The null and alternative hypotheses;

• The target α;

• The desired power to detect H1 ;

• The variability within the population(s) under study.

Our objective here is to find a relationship between the above factors and the sample size that
enables us to select a sample size consistent with the desired α and β.

3.8.1 POWER CALCULATIONS FOR NORMAL SAMPLES

In a one-sample test of a normal mean, to complete a power/sample size calculation, we first
specify the model and hypotheses; we have X1, ...,Xn as a set of random variables relating to the
observed data x1, ..., xn, and an assumption that

Xi ∼ N(µ, σ2)

for i = 1, ..., n. If σ2 is known, to perform a two-sided test of equality the hypotheses would be as
follows:

H0 : µ = c0

H1 : µ = c1



3.8. POWER AND SAMPLE SIZE 69

The maximum likelihood estimate of µ is the sample mean, which is normally distributed,

X ∼ N

(
µ,

σ2

n

)
. The test statistic is

Z =
X − µ

σ/
√
n

and under H0,

Z =
X − c0
σ/
√
n
∼ N(0, 1).

We reject H0 at significance level α if the z statistic is more extreme than the critical values of the
test are

c0 ± CR
σ√
n

CR = Φ−1
(
1− α

2

)

Now, if H1 is true, X ∼ N(c1, σ
2), and hence

Z =
X − c0
σ/
√
n
∼ N

(
c1 − c0
σ/
√
n
, 1

)
.

so the probability that z lies in the critical region is

1− β = Φ

(√
n (c0 − c1)

σ
− CR

)
+Φ

(√
n (c1 − c0)

σ
−CR

)

Thus for fixed α, c0, c1 and n, we can compute the power. Similar calculations are available for
other of the normal distribution-based tests.

In fact. the power equation can be rearranged to be explicit in one of the other parameters if
β is regarded as fixed. For example, if α, β, c0 and c1 are fixed, we can rearrange to get a sample
size calculation to test for fixed difference ∆ = c1 − c0

n =
σ2

(
CR +Φ−1 (1− β)

)2

(c1 − c0)
2

3.8.2 EXTENSIONS: SIMULATION STUDIES

Extension of the power and sample size calculations to more general testing scenarios, such as for
two sample data, or ANOVA, or non-normal data is reasonably straightforward. However, for
general or complex tests, the calculation can often only proceed by simulation. We would begin
as usual by considering the null hypothesis, the test statistic and the null distribution to derive
the critical values. Then, the probability of correctly rejecting the null hypothesis for a specified
alternative by simulating data from the model under the alternative, and recording the proportion
of times that the null hypothesis is correctly rejected.

We discuss simulation-based statistical calculations in section (3.10) below.



70 CHAPTER 3. STATISTICAL ANALYSIS

3.9 MULTIPLE TESTING

The multiple testing corrections are used when several independent statistical tests are being per-
formed simultaneously. It is necessary because, while a given significance level α may be appro-
priate for each individual comparison, it is not for the set of all comparisons

Recall first that the significance level α can be interpreted as the maximum allowable false
positive rate in the test of H0, that is the value of

α = P (Test rejects H0|H0is TRUE)

The idea of a multiple testing correction is to control the rate of false positive results when many
significance tests are being carried out. In order to avoid a lot of spurious positives, when the null
hypothesis is rejected when it is actually true, the α value needs to be lowered to account for the
number of comparisons being performed.

3.9.1 THE BONFERRONI AND OTHER CORRECTIONS

The simplest and most conservative approach is the Bonferroni correction, which sets the signifi-
cance level for the entire set of k comparisons, αB(k), by taking the common significance level α
for each comparison and letting

αB(k) =
α

k

If we have k independent significance tests T1, ..., Tk for hypotheses H
(1)
0 , ...H

(k)
0 at the α level, the

probability p that we will not reject any of the hypotheses if they are all true is merely

P

((
k⋂

i−1

Test Tidoes not reject H
(i)
0

)
|All H(i)

0 are TRUE

)
=

=
k∏

i=1

P
(
Test Tidoes not reject H

(i)
0 |H

(i)
0 is TRUE

)

=
k∏

i=1

(1− α) = (1− α)k

Thus the actual significance level for the series of tests is 1−(1− α)k. For example, with α = 0.05
and k = 10 we get p = 0.9510 ≈ 0.60. This means, however that

P
(
At least one test Ti decrees rejection of its H

(i)
0 |All H

(i)
0 are TRUE

)
= 1− (1− α)k = 0.4

so that we now have a probability of 0.40 that one of these 10 tests will turn out significant, and
one of the H0 will be falsely rejected.

In order to guarantee that the overall significance test is still at the level, we have to adapt the
common significance level α′of the individual tests. This results in the following relation between
the overall significance level α and the individual significance levels α′ :

(
1− α′

)k
= 1− α
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so that the Bonferroni correction αB(k) is defined by

αB(k) = α′ = 1− (1− α)1/k ≈ α

k

Thus, given k tests , and we compare the individual test p-values are less than or equal to αB(k),
then the experiment-wide p-value is less than or equal to α. Another justification for this result
follows from a probability result called the Bonferroni inequality

P (E1 ∪E2 ∪ ... ∪Ek) ≤
k∑

i=1

P (Ei)

The Bonferroni correction is a conservative correction, in that it is overly stringent in reducing the
test-by-test significance level α. This is not the only correction that could be used; the package
SPLUS has other options, and an extensive list is given below: in section (3.9.2).

3.9.2 THE FALSE DISCOVERY RATE

A general framework for multiple testing assessments and corrections can be constructed by con-
sidering a 2×2 classification of test outcomes as follows: consider k simultaneous hypothesis tests,
and their outcomes

OBSERVED RESULT
H0 NOT REJECTED H0 REJECTED Total

H0 TRUE N00 N10 N.0
TRUTH H0 NOT TRUE N01 N11 N.1

Total k −R R k

Note that the row classification is not observed; in fact, in this table only k and R are observed.
Typically, correction methods concentrate on the N10 entry, that is,

P
[
N10 > 0|All H(i)

0 are TRUE
]
≤ α

for appropriately chosen significance level α. This type of control is termed familywise control,
and the quantity α is termed the Type I, or Familywise error rate (FWER).

An alternative approach is to control the expected level of false discoveries, or the False
Discovery Rate (FDR). The FDR is defined by

FDR =





N10
R

R > 0

0 R = 0

A standard procedure, the BENJAMINI-HOCHBERG (BH) procedure, adjusts the k p-values
that result from the tests in a sequential fashion such that the expected false discovery rate is
bounded above by α, for any suitably chosen α in the range (0, 1). The BH procedure is described
below:

1. Compute the p-values in the k original hypothesis tests: p1, ..., pk, and sort them into ascend-
ing order so that

p(1) < p(2) < ... < p(k)
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with corresponding (order statistic) random variables

P(1) < P(2) < ... < P(k)

2. Set 0 < α < 1.

3. Define p(0) = 0 and

RBH = max

{
0 ≤ i ≤ k : p(i) ≤

i

k
α

}

4. Reject H
(j)
0 for each test j where

pj ≤ pRBH

This procedure guarantees that the expected FDR is bounded above by α, a result that holds
for independent tests (where the samples themselves are independent) and also for some samples
that are not independent. An adjusted procedure can be used for false negative, or Type II results,
or the False Non Discovery Rate (FNDR)

FNDR =





N01
k −R

R > 0

0 R = 0

Therefore a variety of corrections can be made. Let pi be the p-value derived from the ith
hypothesis test, then the following p-value thresholds may be used

IDENTITY αI(k) = α

BONFERRONI αB(k) = α/k

THRESHOLD αT (k) = t

FIRST r αTr(k) = p(r) the rth largest p-value

BH αBH(k) = pRBH

3.9.3 STEP-DOWN AND STEP-UP ADJUSTMENT PROCEDURES

The final type of p-value adjustments that are utilized are Step procedures, usually either Step-
Down or Step-Up procedures, which are methods to control the Familywise Error rate FWER and
False Discovery rate FDR respectively. The recipes are reasonably straightforward to implement
computationally, and include the Benjamini and Hochberg procedures as special cases.

In addition to the notation introduced in the previous two subsections, for the k hypothesis
tests under consideration, let tj be the jth test statistic, and let t(j) denote the jth largest absolute
value from t1, ...tk, with corresponding random variables Tj and T(j). The adjusted p-values p∗j can
be defined in the following ways

• Bonferroni single step

p∗j = min {kpj , 1}
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• Holm step-down

p∗(j) = min
1≤i≤j

{
min

{
(k − i+ 1) p(i), 1

}}

• Bonferroni step-down

p∗(j) = min
j≤i≤k

{
min

{
(k − i+ 1) p(i), 1

}}

• Westfall & Young step-down minP

p∗(j) = max
1≤i≤j

{
P

[
max

{
P(i), P(i+1), ..., P(k)

}
≤ p(i)|At least one H0NOT TRUE

]}

• Westfall & Young step-down maxT

p∗(j) = max
1≤i≤j

{
P

[
max

{∣∣T(i)
∣∣ ,

∣∣T(i+1)
∣∣ , ...,

∣∣T(k)
∣∣} ≥

∣∣t(i)
∣∣ |At least one H0NOT TRUE

]}

• Benjamini & Hochberg step-up

p∗(j) = min
j≤i≤k

{
min

{(
k

i

)
p(i), 1

}}

• Benjamini & Yuketeli conservative step-up

p∗(j) = min
j≤i≤k

{
min

{
k
s(k)

i
, 1

}}
where s(k) =

k∑

i=1

1

i

These adjustments to observed p−values are all attempts to preserve the integrity of the tests
in large multiple testing situations. The final two Westfall and Young procedures can often only
be computed in a simulation study.

Note that these methods do not alter the ordering of the test results from “most significant” to
“least significant”; it may be sensible, therefore to fix on a number of results to report.
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3.10 PERMUTATION TESTS AND RESAMPLINGMETHODS

For most of the hypothesis tests above, we start with the assumptions and work forward to derive
the sampling distribution of the test statistic under the null hypothesis. For permutation tests,
we will reverse the procedure, since the sampling distribution involves the permutations which give
the procedure its name and are the key theoretical issue in understanding the test. For resampling
or bootstrap methods , we will resample the original data uniformly and randomly so as to explore
the variability of a test statistic.

3.10.1 PERMUTATION TESTS

A permutation is a reordering of the numbers 1, ..., n. For example, (1, 2, 3, 4, 5, 6), (1, 3, 2, 4, 5,
6), (4, 5, 2, 6, 1, 3) (3, 2, 1, 6, 4, 5) are all permutations of the numbers 1 through 6 (note that
this includes the standard order in first line). There are n! = 1× 2× 3× ...× n permutations of n
objects.

The central idea of permutation tests refers to rearrangements of the data. The null hypothesis
of the test specifies that the permutations are all equally likely. The sampling distribution of
the test statistic under the null hypothesis is computed by forming all (or many) of the permutations,
calculating the test statistic for each and considering these values all equally likely.

Consider the following two group example, where we want to test for any significant difference
between the groups.

Group 1 : 55, 58, 60

Group 2 : 12, 22, 34

Here are the steps we will follow to use a permutation test to analyze the differences between
the two groups. For the original order the sum for Group 1 is 173. In this example, if the groups
were truly equal (and the null hypothesis was true) then randomly moving the observations
among the groups would make no difference in the sum for Group 1. Some of the sums would be a
little larger than the original sum and some would be a bit smaller. For the six observations there
are 720 permutations of which there are 20 distinct combinations for which we can compute the
sum of Group 1.

ORDER GROUP1 GROUP2 SUM
1 55, 58, 60 12, 22, 34 173
2 55, 58, 12 60, 22, 34 125
3 55, 58, 22 12, 60, 34 135
4 55, 58, 34 12, 22, 34 148
5 55, 12, 60 58, 22, 34 127
6 55, 22, 60 12, 58, 34 137
7 55, 34, 60 12, 22, 58 149
8 12, 58, 60 55, 22, 34 130
9 22, 58, 60 12, 55, 34 140
10 34, 58, 60 12, 22, 55 152

ORDER GROUP1 GROUP2 SUM
11 12, 22, 60 55, 58, 34 94
12 12, 58, 22 55, 60, 34 92
13 55, 12, 22 12, 55, 58 89
14 12, 34, 60 55, 58, 34 106
15 12, 58, 34 55, 22, 60 104
16 55, 12, 34 12, 58, 60 101
17 22, 34, 60 55, 58, 34 116
18 22, 58, 34 55, 22, 60 114
19 55, 22, 34 12, 58, 60 111
20 12, 22, 34 55, 58, 60 68

Of these 20 different orderings only one has a Group 1 sum that greater than or equal to the
Group 1 sum from our original ordering. Therefore the probability that a sum this large or larger
would occur by chance alone is 1/20 = 0.05 and can be considered to be statistically significant.
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3.10.2 MONTE CARLO METHODS

In this case the permutation yielded an exact test because we were able to enumerate all of the
possible combinations. In larger examples it will not be possible to list every permutation so we
will have to take a large number of random orderings, sampled uniformly from the permutation
distribution. A general Monte Carlo strategy for two sample testing is outlined below:

1. For two sample tests for samples of size n1 and n2, compute the value of the test statistic for
the observed sample t∗

2. Randomly select one of the (n1 + n2)! permutations, re-arrange the data according to this
permutation, allocate the first n1 to pseudo-sample 1 and the remaining n2 to pseudo-sample
2, and then compute the test statistic t1

3. Repeat 2. N times to obtain a random sample of t1, t2, ..., tN of test statistics from the TRUE
null distribution.

4. Compute the p-value by reporting
Number of t1, t2, ..., tNmore extreme than t∗

N

3.10.3 RESAMPLING METHODS AND THE BOOTSTRAP

In statistical analysis, we usually interested in obtaining estimates of a parameter via some statis-
tic, and also an estimate of the variability or uncertainty attached to this point estimate, and a
confidence interval for the true value of the parameter.

Traditionally, researchers have relied on normal approximations to obtain standard errors and
confidence intervals. These techniques are valid only if the statistic, or some known transformation
of it, is asymptotically normally distributed. If the normality assumption does not hold, then the
traditional methods should not be used to obtain confidence intervals. A major motivation for the
traditional reliance on normal-theory methods has been computational tractability, computational
methods remove the reliance on asymptotic theory to estimate the distribution of a statistic.

Resampling techniques such as the bootstrap and jackknife provide estimates of the stan-
dard error, confidence intervals, and distributions for any statistic. The fundamental assumption
of bootstrapping is that the observed data are representative of the underlying population. By
resampling observations from the observed data, the process of sampling observations from the
population is mimicked. The key techniques are

• THE BOOTSTRAP: In bootstrap resampling, B new samples, each of the same size as
the observed data, are drawn with replacement from the observed data. The statistic is
first calculated using the observed data and then recalculated using each of the new samples,
yielding a bootstrap distribution. The resulting replicates are used to calculate the bootstrap
estimates of bias, mean, and standard error for the statistic.

• THE JACKKNIFE: In jackknife resampling, a statistic is calculated for the n possible
samples of size n−1, each with one observation left out. The default sample size is n−1, but
more than one observation may be removed. Jackknife estimates of bias, mean, and standard
error are available and are calculated differently than the equivalent bootstrap statistics.

Using the bootstrap and jackknife procedures, all informative summaries (mean, variance, quan-
tiles etc) for the sample-based estimates’ sampling distribution can be approximated.
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3.11 REGRESSION ANALYSIS AND THE LINEAR MODEL

Suppose that we have n measurements of two variables X and Y , that is, a sample of pairs of
observations {(xi, yi) : i = 1, ..., n}, and it is believed that there is a linear relationship between X
and Y . Suppose that we regard X as a controlled variable, that is, we can control the values of X
at which Y is measured. Our aim is to try and predict Y for a given value of X, and thus we have
to build a probability model for Y conditional on X = x that incorporates the linear dependence.

3.11.1 TERMINOLOGY

Y is the response or dependent variable
X is the covariate or independent variable

A simple relationship between Y and X is the linear regression model, where

E[Y |X = x] = α+ βx,

that is, conditional on X = x, the expected or “predicted” value of Y is given by α+ βx, where
α and β are unknown parameters; in other words, we model the relationship between Y and X
as a straight line with intercept α and slope β. For data {(xi, yi) : i = 1, ..., n}, the objective is
to estimate the unknown parameters α and β. A simple estimation technique, is least-squares
estimation.

3.11.2 LEAST-SQUARES ESTIMATION

Suppose that a sample, {(xi, yi) : i = 1, ..., n}, is believed to follow a linear regression model,

E[Y |X = x] = α + βx. For fixed values of α and β, let y
(P )
i denote the expected value of Y

conditional on X = xi, that is

y
(P )
i = α+ βxi

Now define error terms ei, i = 1, ..., n by

ei = yi − y
(P )
i = yi − α− βxi

that is, ei is the vertical discrepancy between the observed and expected values of Y . The
objective in least-squares estimation is find a “line of best fit”, and this is achieved by inspecting
the squares of the error terms ei, and choosing α and β such that the sum of the squared errors is
minimized; we aim to find the straight line model for which the total error is smallest.

Let S(α, β) denote the error in fitting a linear regression model with parameters α and β. Then

S(α, β) =

n∑

i=1

e2i =

n∑

i=1

(yi − y
(P )
i )2 =

n∑

i=1

(yi − α− βxi)
2

To calculate the least-squares estimates, we have to minimize S(α, β) as a function of α and β. This
can be achieved in the usual way by taking partial derivatives with respect to the two parameters,
and equating the partial derivatives to zero simultaneously.

(1)
∂

∂α
{S(α, β)} = −2

n∑

i=1

(yi − α− βxi) = 0

(2)
∂

∂β
{S(α, β)} = −2

n∑

i=1

xi(yi − α− βxi) = 0
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Solving (1), we obtain an equation for the least-squares estimates α̂ and β̂

α̂ =
1

n

n∑

i=1

yi − β̂
1

n

n∑

i=1

xi = ȳ − β̂x.

Solving (2) in the same way, and combining the last two equations, and solving for β̂ gives

β̂ = n

n∑
i=1

xiyi −
n∑
i=1

xi
n∑
i=1

yi

n
n∑
i=1

x2i −
{
n∑
i=1

xi

}2 =
nSxy − SxSy

nSxx − {Sx}2
=⇒ α̂ =

n∑
i=1

xiyi − β̂
n∑
i=1

x2i

n∑
i=1

xi

= ȳ − β̂x

Sx =
n∑

i=1

xi Sy =
n∑

i=1

yi Sxx =
n∑

i=1

x2i Sxy =
n∑

i=1

xiyi

Therefore it is possible to produce estimates of parameters in a linear regression model using least-
squares, without any specific reference to probability models. In fact, the least-squares approach is
very closely related to maximum likelihood estimation for a specific probability model.

The correlation coefficient, r, measures the degree of association between X and Y variables
and is given by

r =
nSxy − SxSy√

(nSxx − S2x)(nSyy − S2y)

and therefore is quite closely related to β̂.

3.11.3 LEAST-SQUARES AS MAXIMUM LIKELIHOOD ESTIMATION

Suppose that X and Y follow a linear regression model

E[Y |X = x] = α+ βx,

and recall that the error terms ei were defined

ei = yi − α− βxi.

Now, ei is the vertical discrepancy between observed and expected behaviour, and thus ei could be
interpreted as the observed version of a random variable, say ǫi, which represents the random
uncertainty involved in measuring Y for a given X. A plausible probability model might therefore
be that the random variables ǫi, i = 1, ...n, were independent and identically distributed, and

ǫi ∼ N(0, σ2),

for some error variance parameter σ2. Implicit in this assumption is that the distribution of the
random error in measuring Y does not depend on the value of X at which the measurement is
made. This distributional assumption about the error terms leads to a probability model for the
variable Y . As we can write

Y = α+ βX + ǫ,
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where ǫ ∼ N(0, σ2), then given on X = xi, we have the conditional distribution Yi as

Yi|X = xi ∼ N(α+ βxi, σ
2),

where random variables Yi and Yj are independent (as ǫi and ǫj are independent). On the basis of
this probability model, we can derive a likelihood function, and hence derive maximum likelihood
estimates. For example, we have the likelihood L(θ) = L(α, β, σ2) defined as the product of the n
conditional density terms derived as the conditional density of the observed yi given xi,

L(θ) =
n∏

i=1

f(yi;xi, θ)

=

n∏

i=1

1√
2πσ2

exp

{
− 1

2σ2
(yi − α− βxi)

2

}

=

(
1

2πσ2

)n/2
exp

{
− 1

2σ2

n∑

i=1

(yi − α− βxi)
2

}

The maximum likelihood estimates of α and β, and error variance σ2, are obtained as the values
at which L(α, β, σ2) is maximized. But, L(α, β, σ2) is maximized when the term in the exponent,
that is

n∑

i=1

(yi − α− βxi)
2

is minimized. But this is precisely the least-squares criterion described above, and thus the m.l.e s
of α and β assuming a Normal error model are exactly equivalent to the least-squares estimates.

3.11.4 ESTIMATES OF ERROR VARIANCE AND RESIDUALS

In addition to the estimates of α and β, we can also obtain the maximum likelihood estimate of σ2,

ˆ̂σ2 =
1

n

n∑

i=1

(yi − α̂− β̂xi)
2 = S2

Often, a corrected estimate, s2, of the error variance is used, defined by

s2 =
1

n− 2

n∑

i=1

(yi − α̂− β̂xi)
2

=
1

n− 2

n∑

i=1

(yi − ŷi)
2

where ŷi = α̂ + β̂xi is the fitted value of Y at X = xi. Note also that, having fitted a model
with parameters α̂ and β̂, we can calculate the error in fit at each data point, or residual, denoted
ei, i = 1, ..., n, where ei = yi − ŷi = yi − α̂− β̂xi.
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3.11.5 PREDICTION FOR A NEW COVARIATE VALUE

Suppose that, having fitted a model, and obtained estimates α̂ and β̂ using maximum likelihood
or least-squares, we want to predict the Y value for a new value x∗ of covariate X. By considering
the nature of the regression model, we obtain the predicted value y∗ as

y∗ = α̂+ β̂x∗

3.11.6 STANDARD ERRORS OF ESTIMATORS AND T-STATISTICS

We need to be able to understand how the estimators corresponding to α̂ and β̂ behave, and by how
much the estimate is likely to vary. This can be partially achieved by inspection of the standard
errors of estimates, that is, the square-root of the variance in the sampling distribution of the
corresponding estimator. It can be shown that

s.e.(α̂) = s

√
Sxx

nSxx − {Sx}2
s.e.(β̂) = s

√
n

nSxx − {Sx}2

where s is the square-root of the corrected estimate of the error variance. It is good statistical
practice to report standard errors whenever estimates are reported. The standard error of a pa-
rameter also allows a test of the hypothesis “parameter is equal to zero”. The test is carried out
by calculation of the t-statistic, that is, the ratio of a parameter estimate to its standard error.
The t-statistic must be compared with the 0.025 and 0.975 percentiles of a Student-t distribution
with n− 2 degrees of freedom as described below.

3.11.7 HYPOTHESIS TESTS AND CONFIDENCE INTERVALS

We may carry out hypothesis tests for the parameters in a linear regression model; as usual we
need to be able to understand the sampling distributions of the corresponding estimators. In the
linear regression model, the sampling distributions of the estimators of α and β have Student-t
distributions with n− 2 degrees of freedom, hence we use the test statistics

tα =
α̂− c

s.e.(α̂)
tβ =

β̂ − c

s.e.(β̂)

to test the null hypothesis that the parameter is equal to c.

Typically, we use a test at the 5 % significance level, so the appropriate critical values are the
0.025 and 0.975 quantiles of a St(n−2) distribution. It is also useful to report, for each parameter,
a confidence interval in which we think the true parameter value (that we have estimated by α̂ or
β̂) lies with high probability. It can be shown that the 95% confidence intervals are given by

α : α̂± tn−2(0.975)s.e.(α̂) β : β̂ ± tn−2(0.975)s.e.(β̂)

where tn−2(0.975) is the 97.5th percentile of a Student-t distribution with n−2 degrees of freedom.

The confidence intervals are useful because they provide an alternative method for carrying out
hypothesis tests. For example, if we want to test the hypothesis that α = c, say, we simply note
whether the 95% confidence interval contains c. If it does, the hypothesis can be accepted; if not
the hypothesis should be rejected, as the confidence interval provides evidence that α = c.
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We may carry out a hypothesis test to carry out whether there is significant correlation between
two variables. We denote by ρ the true correlation; then to test the hypothesis

H0 : ρ = 0
H1 : ρ = 0

we use the test statistic

tr = r

√
n− 2

1− r2

which we compare with the null distribution which is Student-t with n − 2 degrees of freedom. If
|tr| > tn−2(0.975), then we can conclude that the true correlation ρ is significantly different from
zero. An alternative test of the hypothesis is given by the Fisher z statistic

z =
1

2
log

(
1 + r

1− r

)

which has a null distribution that is N(0, 1/(n − 3)). Hence, if |
√
n− 3zr| > Φ−1(0.975) = 1.96,

then we can conclude that the true correlation ρ is significantly different from zero.

3.11.8 MULTIPLE LINEAR REGRESSION

In everything that is described above, we have used a model in which we predicted a response Y
from a single covariate X. This simple model can be extended to the case where Y is modelled as
a function of p covariates X1, ...,Xp, that is, we have the conditional expectation of Y given by

E[Y |X1 = x1, ...,Xp = xp] = α+ β1x1 + ...+ βpxp

,so that the observation model is given by

Yi|X1 = xi1, ...,Xp = xip ∼ N(α+ β1xi1 + ...+ βpxip, σ
2).

Again, we can use maximum likelihood estimation to obtain estimates of the parameters in the
model, that is, parameter vector (α, β1, ..., βp, σ

2), but the details are slightly more complex, as we
have to solve p+1 equations simultaneously. The procedure is simplified if we write the parameters
as a single vector, and perform matrix manipulation and calculus to obtain the estimates.

3.11.9 WORKED EXAMPLE

The following data are believed to follow a linear regression model;

x 0.54 2.03 3.15 3.96 6.25 8.17 11.08 12.44 14.04 14.34 18.71 19.90
y 11.37 11.21 11.61 8.26 14.08 16.25 11.00 14.94 16.91 15.78 21.26 20.25

We want to calculate estimates of α and β from these data. First, we calculate the summary
statistics;

Sx =
n∑

i=1

xi = 118.63 Sy =
n∑

i=1

yi = 172.92 Sxx =
n∑

i=1

x2i = 1598.6 Sxy =
n∑

i=1

xiyi = 1930.9
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with n = 12 which leads to parameter estimates

β̂ =
nSxy − SxSy

nSxx − {Sx}2
=

12× 1930.9− 118.63× 172.92

12× 1598.6− (118.63)2
= 0.5201

α̂ = ȳ − β̂x = 14.410− 0.5201× 9.8842 = 9.269

This fit leads to the following fitted values and residuals;

x 0.54 2.03 3.15 3.96 6.25 8.17 11.08 12.44 14.04 14.34 18.71 19.90
y 11.37 11.21 11.61 8.26 14.08 16.25 11.00 14.94 16.91 15.78 21.26 20.25
ŷ 9.55 10.33 11.95 12.37 12.52 13.52 15.03 15.73 16.57 16.73 19.00 19.62
e 1.82 0.88 −0.34 −4.11 1.56 2.73 −4.03 −0.80 0.34 −0.95 2.26 0.63

The corrected variance estimate, s2, is given by

s2 =
1

n− 2

n∑

i=1

(yi − α̂− β̂xi)
2 =

1

n− 2

n∑

i=1

(yi − ŷi)
2 = 3.438 =⇒ s = 2.332

The standard errors for the two parameters are given by

s.e.(α̂) = s

√
Sxx

nSxx − {Sx}2
= 1.304

s.e.(β̂) = s

√
n

nSxx − {Sx}2
= 0.113

The t-statistics for the two parameters are given by

tα =
α̂

s.e.(α̂)
=

9.269

1.304
= 7.109

tβ =
β̂

s.e.(β̂)
=

0.520

0.113
= 4.604.

The 0.975 percentile of a Student-t distribution with n − 2 = 10 degrees of freedom is found from
tables to be 2.228. Both t-statistics are more extreme than this critical value, and hence it can be
concluded that both parameters are significantly different from zero.

To calculate the confidence intervals for the two parameters. we need to use the 0.975 percentile
of a St(10) distribution. >From above, we have that St(10)(0.975) = 2.228, and so the confidence
intervals are given by

α : α̂± tn−2(0.975)s.e.(α̂) = 9.269± 2.228× 1.304 = (6.364 : 12.174)

β : β̂ ± tn−2(0.975)s.e.(β̂) = 0.5201± 2.228× 0.113 = (0.268 : 0.772)

so that, informally, we are 95% certain that the true value of α lies in the interval (6.724 : 12.174),
and that the true value of β lies in the interval (0.268 : 0.772). This amounts to evidence that, for
example, α = 0 (as the confidence interval for α does not contain 0), and evidence that β = 1 (as
the confidence interval for β does not contain 1).
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3.12 GENERALIZING THE LINEAR MODEL

In the previous section we concentrated on a simple model where response Y is modelled as a
function of p covariates X1, ...,Xp, and the conditional expectation of Y given by

E[Y |X1 = x1, ...,Xp = xp] = β0 + β1x1 + ...+ βpxp

so that the observation model is given by

Yi|X1 = xi1, ...,Xp = xip ∼ N(β0 + β1xi1 + ...+ βpxip, σ
2). (3.1)

In this section, we demonstrate how this model can be represented in matrix form, and demonstrate
that many of the simple models and tests studied previously in section (??) can be viewed as special
cases of the more general class of Linear Models.

In addition, we demonstrate how the linear model can be extended to allow for the modelling
of data that are not normally distributed; often we collect discrete data for example, or data where
the normality assumption (3.1) is not appropriate.

3.12.1 REGRESSION AS A LINEAR MODEL

Equation (3.1) can be expressed in vector/matrix form as follows:

Y = Xβ + ǫ

where

Y = [Y1, Y2, ..., Yn]
T an n× 1column vector(the RESPONSE)

Xi = [1, xi1, xi2, ..., xip] a 1× (p+ 1)row vector

X = [1,X1,X2, ...,Xp]
T an n× (p+ 1)matrix (the DESIGN MATRIX)

β =
[
β0, β1, ..., βp

]T
a (p+ 1)× 1column vector(the PARAMETER VECTOR)

ǫ = [ǫ1, ǫ1, ..., ǫp]
T an n× 1column vector(the RANDOM ERRORS)

This form of the regression model illustrates the fact that the model is linear in β (that is, the
elements of β appear in their untransformed form). This is important as it allows particularly
straightforward calculation of parameter estimates and standard errors, and also makes clear that
some of the other models that we have already studied, such as ANOVA models, also fall into the
linear model class.

It is reasonably straightforward to show that the least-squares/maximum likelihood estimates
of β for any linear model take the form:

β̂ =
(
XTX

)−1
XT y σ̂2 =

1

n− p

(
y −Xβ̂

)T (
y−Xβ̂

)

where XT is the transpose of matrix X : the (i, j +1) element of X is xij for j = 1, 2, ..., p, which
is the (j + 1, i) element of XT . The p× p variance-covariance matrix is

σ̂2
(
XTX

)−1
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and the diagonal elements of this matrix give the squared standard errors for the estimates and
hence quantify uncertainty. A goodness-of-fit measure that records the adequacy of the model in
representing that data is the log-likelihood value evaluated at the maximum likelihood estimates

−2 logL
(
β̂, σ̂2

)
= n log σ̂2 +

1

σ̂2

(
y−Xβ̂

)T (
y−Xβ̂

)

Note that, here, the entries in the design matrix are merely the raw values for the p predictors
and the n data points. However, these entries can be replaced by any functions of the predictor
values, such as polynomial or non-linear functions of the xij , for example

x2ij, x
3
ij, ... gij(xij) = exij

The most important feature is that is the model is still linear in β.

3.12.2 THE EXTENDED LINEAR MODEL

The linear model formulation can also be extended in the following way; in vector/matrix form as
follows:

Y = g (X)β + ǫ (3.2)

where

Y = [Y1, Y2, ..., Yn]
T an n× 1column vector(the RESPONSE)

g (Xi) = [1, g1 (xi) , g2 (xi) , ..., gp (xi)] a 1× (p+ 1)row vector

X = [1,g (X1) ,g (X2) , ...,g (Xp)]
T an n× (p+ 1)matrix (the DESIGN MATRIX)

β =
[
β0, β1, ..., βp

]T
a (p+ 1)× 1column vector(the PARAMETER VECTOR)

ǫ = [ǫ1, ǫ1, ..., ǫp]
T an n× 1column vector(the RANDOM ERRORS)

that is, the original predictors X are incorporated in transformed form. That is, for i = 1, ..., n
and j = 1, ..., p, we have that gj (xi) is a scalar function of vector xi; for example

gj (xi) = xi1 + xi2

gj (xi) =
√
xi1xi2

and so on. This general representation is very flexible, but in statistical terms is very straightfor-
ward. The equation in (3.2) ensures that this model is still a linear model in the parameters β.
The gj functions are often called basis functions. This class of model incorporates

• Fourier representations (trigonometric basis functions)

• splines (polynomial basis functions)

• wavelets (localized, orthogonal basis functions)
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3.12.3 GENERALIZED LINEAR MODELS

A Generalized Linear Model (GLM) is an extension of the linear model that allows for non-
normal data to be modelled. For example, we could have that Yi is distributed as a discrete
variable, where either Bernoulli, binomial, multinomial, negative binomial or Poisson models may
be appropriate, or that Yi is a continuous variable having a Gamma, or Lognormal, or some other
non-normal distribution.

The regression model, where the distribution of Y is deemed to be dependent on the predictors
or covariates, is an attractive idea that can be extended to this non-normal situation. In the
linear model, the responses are modelled via their expectation, conditional on the values of the
predictor variables. This idea is retained in the GLM setting, where the model is completed by
key a component of the GLM is the link function g, and in fact we have that if µ = E [Y ]

g(µ) =Xβ

where the term Xβ is the linear predictor. The function g maps the expectation µ, which may
be a parameter on a bounded range, to the whole real line. It must be a 1-1 function (one value
of µ maps to one and only one real value via g) that has a well-defined inverse function g−1.

EXAMPLE In the case of Binomial data, each individual data point Yi is Bernoulli (θ) dis-
tributed, so that

µ = E [Y ] = θ

where 0 ≤ θ ≤ 1. Hence suitable link functions must be mappings from the range [0, 1] to R. Such
functions include

• the logistic link g(µ) = log

(
µ

1− µ

)

• the probit link g(µ) = Φ−1 (µ)

• the complementary log-log link g(µ) = − log (− log (µ))

EXAMPLE In the case of Poisson data, where each individual data point Yi is Poisson (λ)
distributed, so that

µ = E [Y ] = λ

where λ > 0. Hence suitable link functions must be mappings from the range (0,∞) to R. One
such function is the log link

g(µ) = log (µ)

Inference for GLMs can be carried out using similar techniques to those studied already, such
as the maximum likelihood procedure. Usually, the maximum likelihood estimates are obtained by
numerical maximization; GLM estimation functions are readily available in most statistics packages
such as SPLUS. The results of a GLM fit are of a similar form to those for the ordinary linear
model, that is, including

• a set of parameter estimates β̂ and standard errors s.e.
(
β̂
)
,

• a set of linear predictions Xβ̂ and fitted values ŷ = g−1
(
Xβ̂

)

• a goodness of fit measure −2 logL
(
β̂

)



3.13. CLASSIFICATION 85

3.13 CLASSIFICATION

Classification is a common statistical task in which the objective is to allocate or categorize an
object to one of a number of classes or categories on the basis of a set of predictor or covariate
measurements. Typically, the predictor measurements relate to two or more variables, and the
response is univariate, and often a nominal variable, or label. Specifically, we aim to the
observed variability in a response variable Y via consideration of predictors X = (X1, ...,XK).
The principal difference between classification and conventional regression is that the response
variable is a nominal categorical variable, that is, for data item i

Yi ∈ {0, 1, 2, ...K}

so that the value of Yi is a label rather than a numerical value, where the label represents the
group or class to which that item belongs.

We again wish to use the predictor information in X to allocate Y to one of the classes There
are two main goals:

• to partition the observations into two or more labelled classes. The emphasis is on deriving
a rule that can be used to optimally assign a new object to the labeled classes.

— This is the process of CLASSIFICATION

• to describe either graphically or algebraically, the different features of observations from
several known collections. We attempt to find discriminants whose numerical values are
such that the collections are separated as much as possible.

— This is the process of DISCRIMINATION

Both are special cases of what is termed MULTIVARIATE ANALYSIS

Typically, the exercise of classification will be predictive, that is,

• we have a set of data available where both the response and predictor information is known

— these data are the training data

• we also have a set of data where only the predictor information is known, and the response
is to be predicted

— these data are the test data

• often we will carry out an exercise of model-building and model-testing on a given data
set by extracting a training set, building a model using the training data, whilst holding
back a proportion (the test set) for model-testing.
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3.13.1 CLASSIFICATION FOR TWO CLASSES (K = 2)

Let f1(x) and f2(x) be the probability functions associated with a (vector) random variable X for
two populations 1 and 2. An object with measurements x must be assigned to either class 1 or class
2. Let X denote the sample space. Let R1 be that set of x values for which we classify objects
into class 1 and R2 ≡ X\R1 be the remaining x values, for which we classify objects into class 2.

The conditional probability, P (2|1), of classifying an object into class 2 when, in fact, it is from
class1 is:

P (2|1) =
∫

R2

f1 (x) dx.

Similarly, the conditional probability, P (1|2), of classifying an object into class 1 when, in fact, it
is from class 2 is:

P (1|2) =
∫

R1

f2 (x) dx

Let p1 be the prior probability of being in class 1 and p2 be the prior probability of 2, where
p1 + p2 = 1. Then,

P (Object correctly classified as class 1) = P (1|1)p1
P (Object misclassified as class 1) = P (1|2)p2

P (Object correctly classified as class 2) = P (2|2)p2
P (Object misclassified as class 2) = P (2|1)p1

Now suppose that the costs of misclassification of a class 2 object as a class 1 object, and vice versa
are, respectively.c (1|2) and c(2|1). Then the expected cost of misclassification is therefore

c(2|1)P (2|1)p1 + c (1|2)P (1|2)p2.

The idea is to choose the regions R1 and R2 so that this expected cost is minimized. This can be
achieved by comparing the predictive probability density functions at each point x

R1 ≡
{
x :

f1 (x)

f2 (x)

p1
p2
≥ c (1|2)

c (2|1)

}
R2 ≡

{
x :

f1 (x)

f2 (x)

p1
p2

<
c (1|2)
c (2|1)

}

or by minimizing the total probability of misclassification

p1

∫

R2

f1 (x) dx+ p2

∫

R1

f2 (x) dx

If p1 = p2, then

R1 ≡
{
x :

f1 (x)

f2 (x)
≥ c (1|2)

c (2|1)

}

and if c (1|2) = c (2|1), equivalently

R1 ≡
{
x :

f1 (x)

f2 (x)
≥ p2

p1

}

and finally if p1 = p2 and c (1|2) = c (2|1) then

R1 ≡
{
x :

f1 (x)

f2 (x)
≥ 1

}
≡ {x : f1 (x) ≥ f2 (x)}
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3.13.2 CLASSIFICATION FOR TWO NORMAL SAMPLES

Suppose that we have two (multivariate) normal classes (in d dimensions), that is where

• class 1: X ∼ Nd (µ1,Σ1)

f1 (x) =

(
1

2π

)d/2 1

|Σ1|1/2
exp

{
−1

2
(x− µ1)

T Σ−11 (x− µ1)

}

• class 2: X ∼ Nd (µ2,Σ2)

f2 (x) =

(
1

2π

)d/2 1

|Σ2|1/2
exp

{
−1

2
(x− µ2)

T Σ−12 (x− µ2)

}

We sometimes assume that Σ1 = Σ2 = Σ (homogeneity of variances). Using the previous formula,
we identify the following classification rule; we allocate an observation with predictor variable
x0 to class 1 if

(µ1 − µ2)
T Σ−1x0 −

1

2
(µ1 − µ2)

T Σ−1 (µ1 + µ2) ≥ log

[
c (1|2) p2
c (2|1) p1

]
. (3.3)

More generally, if Σ1 = Σ2, we allocate an observation with predictor variable x0 to class 1 if

−1

2
xT0

(
Σ−11 − Σ−12

)
x0 +

(
µT1Σ

−1
1 − µT2Σ

−1
2

)
x0 − k ≥ log

[
c (1|2) p2
c (2|1) p1

]
(3.4)

where

k =
1

2
log

( |Σ1|
|Σ2|

)
+

1

2

(
µT1Σ

−1
1 µ1 − µT2Σ

−1
2 µ2

)

The parameters µ1, µ2 and Σ, Σ1 and Σ2 may be estimated from training data.

• if the covariance matrices are presumed equal then we have a total of

2d+
1

2
d (d+ 1)

parameters to estimate

• if the covariance matrices are presumed unequal then we have a total of

2d+ d (d+ 1)

parameters to estimate Thus with limited data in d dimensions, we may be limited in the
type of analysis can be done. In fact, we may have to further restrict the type of covariance
structure that we may assume; for example, we might have to restrict attention to

• diagonal covariance matrices (2d parameters in total),

• or an assumption of sphericity (2 (d+ 1) parameters in total)

Despite their simplicity, such models often work well in practice.
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3.13.3 DISCRIMINATION

Discriminant analysis works in a very similar fashion; from equations (3.3) and (3.4) we note
that the boundary between regions R1 and R2 takes one of two forms

• Equal covariances: we have a straight line/plane defined by an equation of the form

A1x+ a0

where A1 is a d× d matrix

• Unequal covariances: we have a quadratic surface defined by an equation of the form

xTB2x+B1x+ b0

where B1 and B2 are d× d matrices.

3.13.4 ASSESSMENT OF CLASSIFICATION ACCURACY

The performance of a classification rule can be achieved in a number of ways: we can examine

• the within-sample classification error: the proportion of elements in the training sample
that are misclassified by the rule

• the leave-one-out classification error: the proportion of elements in the training sample
when the model is built (that is, the parameters are estimated) on a training sample that
omits a single data point, and then attempts to classify that point on the trained model

• an m-fold cross-validation : the data are split into m subsamples of equal size, and one
is selected at random to act as a pseudo-test sample. The remaining data are used as
training data to build the model, and the prediction accuracy on the pseudo-test sample
is computed. This procedure is repeated for all possible splits, and the prediction accuracy
computed as a average of the accuracies over all of the splits.

• accuracy using bootstrap resampling to achieve the cross-validation based estimates of
accuracy from above.

The theory behind the assessment of classification accuracy is complex.

3.13.5 ROC CURVES

Receiver Operating Characteristic (ROC) curves can also be used to compare the classifica-
tion performance classifiers. We consider the results of a particular classifier for two populations,
say one population with a disease, the other population without the disease. Suppose that a single
characteristic, x, is to be used to classify individuals.

The classification procedures above reduce to a simple rule; we classify an individual to class 1 if

x < t0

for some threshold t0, and to class 2 otherwise. We then consider the following quantities:
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• Sensitivity: probability that a test result will be positive when the disease is present (true
positive rate, expressed as a percentage).

• Specificity: probability that a test result will be negative when the disease is not present
(true negative rate, expressed as a percentage).

• Positive likelihood ratio: ratio between the probability of a positive test result given the
presence of the disease and the probability of a positive test result given the absence of the
disease

TruePositiveRate

FalsePositiveRate

• Negative likelihood ratio: ratio between the probability of a negative test result given the
presence of the disease and the probability of a negative test result given the absence of the
disease

False Negative Rate

True Negative Rate

• Positive predictive value: probability that the disease is present when the test is positive
(expressed as a percentage).

• Negative predictive value: probability that the disease is not present when the test is
negative (expressed as a percentage).

Disease Class
1 2 Total

Predicted 1 a c a+ c
Class 2 b d b+ d

Total a+ b c+ d a+ b+ c+ d

• Sensitivity:/Specificity:

Sensitivity :
a

a+ b
Specificity :

d

c+ d

• Likelihood Ratios

PLR =
Sensitivity

1− Specificity
NLR =

1− Sensitivity

Specificity

• Predictive Values

PPV =
a

a+ c
NPV =

d

b+ d

As the classifier producing the predicted class depends on the threshold t0, we can produce a plot
of how these quantities change as t0 changes.

If we plot

x(t0) : 1− Specificity att0

y(t0) : Sensitivity att0

then we obtain an ROC curve;
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• for a good classifier would rise steeply and then flatten off ; such a curve would have a large
area underneath it on the unit square (the domain of (x(t0), y(t0)))

• for a poor classifier would be have an ROC curve near the line y = x.

ROC Curve

3.13.6 GENERAL CLASSIFICATION SCHEMES

The general exercise of classification can be seen as a exercise in regression modelling for a
nominal categorical variable. Previously, we studied regression, and more briefly generalized
linear regression.

• For a binary response, or a two-class problem, we can use logistic or binary regression

• For amultinomial response, or amulti-class problem we can usemultinomial regression

Because of this regression context, we can use all the previous tools for analysis in regression models
that we have used previously.

It is common to view classification of objects in a GLM framework;

3.13.7 SUPERVISED AND UNSUPERVISED CLASSIFICATION

An important distinction can be drawn between classification problems in which training data,
that is response and predictor pairs for known cases, are available, which are referred to as super-
vised learning problems, and problems where no such training data are available, and all inferences
about substructure within the data must be extracted from the test data alone, possibly only with
some background or prior knowledge.
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3.14 PRINCIPAL COMPONENTS& PARTIAL LEAST SQUARES

Principal Components Analysis (PCA) can be used to reveal the underlying variance structure
of a data set and a device for data visualization for exploratory data analysis. In its role at reducing
rank of a data matrix, PCA can be used to estimate how “true variates” or sources of variability
there are in a multivariate data set. Partial Least Squares (PLS) gives a similar data reduction
decomposition, but also incorporates (the required) dependence between predictor and response
present in a regression context.

3.14.1 PRINCIPAL COMPONENTS ANALYSIS

Principal Components Analysis (PCA) is a technique used in high dimensional data analysis, for
example in the analysis of microarray data. It is used to reduce the dimensionality of a data
set or data matrix. Broadly, it describes the data set in terms of its components of variance.
Each principal component describes a percentage of the total variance of a data set, and
computes loadings or weights that each variate contributes to this variance. For example, the
first principal component of a data set describes the dimension which accounts for the greatest
amount of variance of the data set. The coefficients of the principal components quantify the
loading or weight of each variate to that amount of variance.

The mathematical assumptions behind PCA include multivariate normality of the underlying
observations. It is not strictly a regression model, as it only analyzes the predictor variables,
or, at least, treats all variables equivalently. As a technique, however, it does often contribute in
regression or classification analysis because of its data reduction properties.

Mathematical Construction

In PCA the data matrix is typically arranged with observations in rows, and different predictors
in columns. In a classification context, we might wish to see how much information the predictor
variables contained. Suppose that the N × p data matrix X is so arranged, but also that X is
centred, so that the mean within a column is zero - this is achieved by taking the raw predictor
data matrix, and subtracting from each element in a column that columns’ sample mean

In linear regression, the matrix X was referred to as the design matrix, and used to estimate
parameters in the regression model using the formula for response vector y.

β̂ =
(
XTX

)−1
XTy (3.5)

with prediction

ŷ =Xβ̂ =X
(
XTX

)−1
XTy

Note that if X is the centred matrix as defined, we have that

S =
XTX

N

is the sample covariance matrix. Now using standard matrix techniques, we may (uniquely)
write X in the following way

X =UDVT (3.6)
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where U is (N × p) , V is (p× p) such that

UTU =VTV = Ip

for p-dimensional identity matrix Ip (that is, U and V are orthogonal matrices), and D is a
(p× p) matrix with diagonal elements d1 ≥ d2 ≥ ... ≥ dp ≥ 0 and zero elements elsewhere. The
representation in (3.6) is termed the singular value decomposition (SVD) of X. Note that,
using this form, we have

XTX = VDTUTUDVT =VD2VT =VLVT (3.7)

This representation is called the eigen decomposition;.the diagonal elements of L =D2 are

l1 ≥ l2... ≥ lp ≥ 0;

these are termed the eigenvalues of XTX. The columns of the matrix V are termed the eigen-
vectors of XTX, and the jth column, vj is the eigenvector associated with eigenvalue lj .

The principal components of XTX are defined via the columns of V, v1, ...,vp. The jth

principal component is zj , defined by

zj = Xvj = ljuj

for normalized vector uj . The first principal component z1 has largest sample variance amongst
all normalized linear combinations of the columns of X; we have that

V ar [z1] =
l1
N

Now, recall that in the SVD, VTV = Ip, that is the columns of V are orthogonal. Hence the
principal components z1, ...,zp are also orthogonal.

The total variance explained by the data is a straightforward function of the centered design
matrix; it is the sum of the diagonal elements (or trace) of the matrix S, given by

trace (S) =

p∑

j=1

[S]jj =
trace

(
XTX

)

N
=

trace (L)

N
=

1

N

p∑

j=1

lj

and hence the jth principal component accounts for a proportion

lj
p∑

k=1

lj

(3.8)

of the total variance.
Using principal components, therefore, it is possible to find the “directions” of largest variability

in terms of a linear combination of the columns of the design matrix; a linear combination of
column vectors x1, ...,xp is a vector w of the form

w =

p∑

j=1

πjxj

for coefficients (loadings) π = (π1, ..., πp) - for the first principal component, π = v1.
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Statistical Properties

It is of practical use to be able to see how many principal components are needed to explain the
variability in the data. To do this we need to study the statistical properties of the elements of
the decomposition used. If the predictor variables have a multivariate normal distribution,
we have the following statistical result. Suppose that predictor vector Xi=(Xi1, ...,Xip) have a
multivariate normal distribution for i = 1, ...,N ,

Xi ∼ Np (µ,Σ)

where the (p× p) covariance matrix Σ has eigen decomposition

Σ = ΓΛΓT

for eigenvalue matrix Λ = diag (λ1, ..., λp) and eigenvector matrix Γ =
(
γ1, ...,γp

)
. Then the

centred sample covariance matrix S

S =
XTX

N

with eigen decomposition

S = VLVT

for sample eigenvalue matrix L = diag (l1, ..., lp) and eigenvector matrix V = (v1, ...,vp) is such
that, approximately, as N →∞,

l = (l1, ..., lp)
T ∼ N

(
0, 2Λ2

)

that is, the sample eigenvalues are approximately independently normally distributed with variance

2λ2j
N − 1

Uses

The main use of principal components decomposition is in data reduction or feature extraction.
It is a method for looking for the main sources of variability in the predictor variables, and the
argument follows that the first few principal components contain the majority of the explanatory
power in the predictor variables. Thus, instead of using the original predictor variables in the
linear (regression) model

Y = XβX+ǫ

we can use instead the principal components as predictors

Y = ZβZ+ǫ.

where Z = XV, where βX and βZ are the parameters vectors in the regression model, both of
dimension (p× 1). The data compression or feature extraction arises if, instead of taking all p of
the principal components, we take only the first k, that is, we extract the first k columns of matrix
Z, and reduce βZ to being a (k × 1) vector. Choosing k can be done by inspection of the “scree”
plot of the successive scaled eigenvalues as in (3.8).
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3.14.2 PARTIAL LEAST SQUARES

The principal components analysis outlined above is an excellent method for extracting the linear
combinations of the input predictors that are the largest sources of variability. But, implicit in the
PCA definition, is the constraint that no aspect of relationship between the predictors X and the
response Y is recognized. Hence, if the PCA is to be used as a feature extraction method for use
in regression, there may well be a deficiency in the principal components as predictors themselves.

Partial Least Squares (PLS) is a related feature extraction procedure where the relationship
between the predictors X and the response Y is modelled explicitly. It does this by accounting
for the correlation between response and prediction under the usual linear model formulation. An
algorithm to construct the PLS components is given by (Hastie et al. 2001)1.

1. Let xj = (xj1, ...xjn)
T be the jth column of the design matrix X, appropriately centred (by

subtracting the column mean xj) and scaled (by column sample standard deviation sj) to
have sample mean zero and sample variance one.

2. Set ŷ(0) = 1y and x
(0)
j = xj

3. For m = 1, 2..., p,

• zm =

p∑

j=1

φ̂mjx
(m−1)
j , where

φ̂mj = 〈v1,v2〉 =
n∑

i=1

v1iv2i

is the inner product operator

• θ̂m is defined by

θ̂m =
〈zm,y〉
〈zm, zm〉

• ŷ(m) is defined by

ŷ(m) = ŷ(m−1) + θ̂mzm

• x(m)j is defined by

x
(m)
j = x

(m−1)
j −




〈
zm,x

(m−1)
j

〉

〈zm, zm〉


zm

so that, for each j = 1, ..., p, x
(m)
j is orthogonal to zm.

4. Record the sequence of fitted vectors ŷ(1), ŷ(2), ..., ŷ(p).

1The Elements of Statistical Learning: Data Mining Inference and Prediction, p68 Hastie, Tibshirani and Freed-

man, Springer Series in Statistics, 2001.
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5. Evaluate the PLS coefficients as

β̂
(PLS)

j =
m∑

k=1

φ̂kj θ̂k

and the mth PLS direction is

zm =

p∑

k=1

φ̂mkxk

In the construction of each PLS direction zm the predictors are weighted by the strength of their
univariate impact on y. The algorithm first regresses y first on z1, giving coefficient θ̂1, and then
orthogonalizes x1, ...,xp to z1, then proceeds to regress y first on z2 on these orthogonalized vectors,
and so on. After M ≤ p steps, the vectors

z1, ..., zM

have been produced, and can be used as the inputs in a regression type model, to give the

β̂
(PLS)

1 , ..., β̂
(PLS)

M
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CHAPTER 4

STATISTICAL MODELS AND METHODS IN
BIOINFORMATICS

4.1 STRUCTURAL BIOINFORMATICS:
BIOLOGICAL SEQUENCE ANALYSIS

The statistical analysis of biological sequences utilizes the ideas previously introduced in the con-
text of general probability theory, such as conditional probability, entropy, covariance and order
statistics, and statistical tools such as maximum likelihood estimation, hypothesis testing and p-
value calculation. In many ways, biological sequences provide a relatively simple data analysis
environment, in that the raw data themselves are usually discrete items. The main difficulty lies
in the scale of the analysis as genomic/proteomic data sets are typically vast.

A key distinction that we will make is between observable and unobservable quantities:

• observable variables usually consist of nucleotides for DNA sequences and amino-acid residues
for protein sequences, that is, quantities that we can “measure” or observe at all points in the
sequence. These quantities are usually observed without error, but occasionally can be sub-
ject to uncertainty (such the uncertainty arising from base-calling algorithms). Occasionally,
other, larger scale observable quantities might be available, such as DNA motifs, or protein
secondary structure.

• unobservable variables correspond to hidden or latent structure that is not observable, such
as CpG island categories, regulatory regions, introns/exons, protein secondary and higher-
order structures. These variables are the main focus of our interest.

4.2 STOCHASTIC PROCESSES

A stochastic process, denoted here by {Xt} or X(t), is a sequence of discrete or continuous
random variables indexed by a time parameter t that itself may be discrete (so that t = 0,±1,±2, ...
say) or continuous (so that t ≥ 0 say). For example, a nucleotide sequence can be thought of
as a simple stochastic process where time variable t indexes base position, and random variables
X1,X2,X3, ... are discrete random variables taking values on the integers {1, 2, 3, 4} corresponding
to {A,C,G,T} say, that correspond to the bases in consecutive positions. We can treat the
sequence of variables {X1,X2,X3, ...} merely as a collection of random variables and specify and
study their joint distribution. Usually, the most simple type of stochastic process is a sequence
of discrete variables observed in discrete time, as then we can merely use the chain rule to write
down the joint probability mass function

P [X1 = x1,X1 = x2,X1 = x3, ...] = P [X1 = x1]× P [X2 = x2|X1 = x1]× P [X3 = x3|X1 = x1,X2 = x2] ...

Such a model will form the basis of much of the statistical analysis of biological sequences, as it
allows us to build up the probability distribution for an observed sequence.

97
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4.2.1 THE POISSON PROCESS

Consider a sequence of events occurring in continuous time according to some probabilistic rules
that are to be defined, and consider random variables {X(t), t ≥ 0} that count the number of
events that occur in the intervals (0, t] for t ≥ 0, so that X(t) takes values 0, 1, 2, ....

Suppose that

1. X(0) = 0

2. For all 0 < s ≤ t, h > 0, and non-negative integers n and m,

P [X(t+ h)−X(t) = n|X(s) = m] = P [X(t+ h)−X(t) = n]

that is, the numbers of events occurring in disjoint intervals are probabilistically independent.

3. For △t > 0 small,

P [X(t+△t)−X(t) = 1] ≈ λ△t

for some λ > 0, that is, the probability of exactly one event occurring in the small interval
(t, t+△t] is, for small △t, proportional to the length of the interval, △t. The parameter λ
is known as the rate parameter.

4. For △t > 0 small,

P [X(t+△t)−X(t) ≥ 2] ≈ 0

for some λ > 0, that is, the probability of more than one event occurring in a small interval
(t, t+△t] is essentially zero.

It can be shown that the sequence of discrete variables {X(t), t ≥ 0} each follow a discrete Poisson
distribution, that is, if Pn(t) =P[Precisely n events occur in (0, t]] it can be shown that

Pn(t) = P [X(t) = n] =
e−λt(λt)n

n!
n = 0, 1, 2, ...

The sequence {X(t), t ≥ 0} form a homogeneous Poisson Process with rate λ (that is, a
Poisson process with constant rate λ)

4.2.2 DISTRIBUTIONAL RESULTS FOR TO THE POISSON PROCESS

We have studied the Poisson process in previous sections; the relevant distributional results can be
summarized as follows:

1. For t ≥ 0, X(t) ∼ Poisson(λt)

2. If T1,T2, T3, ... define the inter-event times of events occurring as a Poisson process, that is,
for n = 1, 2, 3, ...

Tn = “time between (n− 1)st and nth event′′

then T1,T2, T3, ... are a sequence of independent and identically distributed random vari-
ables with

Tn ∼ Exponential(λ)
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3. If Y1,Y2, Y3, ... define the times of events occurring as a Poisson process, that is, for n =
1, 2, 3, ...Yn =“time at which nth event occurs”, then Y1,Y2, Y3, ... are a sequence of random
variables with

Yn ∼ Gamma(n, λ)

4. Consider the interval of length L, (0, L], and suppose that k events occur (according to the
Poisson process rules) in that interval. If V1,V2, ..., Vk define the (ordered) event times of the
k events occurring in that interval, then, given L and k, V1,V2, ..., Vk are the order statistics
derived from an independent and identically distributed random sample U1,U2, ..., Uk
where

Ui ∼ Uniform(0, L)

The homogeneous Poisson process is the standard model for discrete events that occur in con-
tinuous time. It can be thought of as a limiting case of an independent Bernoulli process (a model
for discrete events occurring in discrete time); let

Xt ∼ Bernouilli (θ) t = 1, 2, 3,

be an i.i.d. sequence: a realization of this sequence might look like

0010101000100101000010010001.....

For such a process, we have seen (in chapter 2) that

• the number of 1s that occur in any finite and disjoint subsequences are independent random
variables

• the number of 1s that occur in any finite subsequence of n time points is a Binomial (n, θ)
random variable

• the numbers of trials between successive 1s are i.i.d. Geometric (θ) random variables.

Now consider the a large sequence where θ is small; the Bernoulli sequence approximates a contin-
uous time sequence, where the events (i.e. the 1s) occur at a constant rate of λ = nθ per n trials,
and the Poisson process requirements are met.

The homogeneous Poisson process is a common model that is used often in many scientific fields.
For example, in genetics, the Poisson process is used to model the occurrences of crossings-over in
meiosis. In sections below we will see how the Poisson process model can be used to represent
occurrences of motifs in a biological sequence.
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4.2.3 MARKOV CHAINS

Markov chains are a special type of discrete valued, discrete time stochastic process that play a
central role in the modelling of biological sequences. Consider a sequence of discrete random
variables {Xt} indexed in discrete time by t = 1, 2, 3, ..., and each having a range of possible values
(or states) X = {1, 2, 3, ..., S} say (with S finite).

Suppose that the joint distribution of the {X1,X2,X3, ...} is specified (using chain-rule ideas)
entirely via the one-step ahead conditional probabilities

P [Xt+1 = xt+1|X1 = x1, ...,Xt = xt] = P [Xt+1 = xt+1|Xt = xt]

(known as the Markov or memoryless property) so that

P [Xt+1 = j|Xt = i] = Pr (State iat time t→ State jat time t+ 1) = pij

for i, j ∈ {1, 2, 3, ..., S}, say, that does not depend on t. The probabilistic specification can be
encapsulated in the S × S matrix

P =




p11 p12 p13 · · · p1S
p21 p22 p23 · · · p2S
...

...
...

. . .
...

pS1 pS2 pS3 · · · pSS




which is called the transition matrix where the element in row i and column j defines the
probability of moving from state i to state j. Note that the row totals must equal 1.

The sequence of random variables described by the matrix P form aMarkov Chain. Thinking
back to the chain rule, in order to complete the specification, a probability specification for the
initial state random variable X1 is required; we can denote this discrete probability distribution

by row vector of probabilities π(1) =
(
π
(1)
1 , π

(1)
2 , ...π

(1)
S

)
. To compute the (marginal) probability

of random variable Xt taking the value i, we can use matrix algebra and an iterative calculation

as follows; let π(t) =
(
π
(t)
1 , π

(t)
2 , ...π

(t)
S

)
denote the probability distribution of Xt. First, using the

Theorem of Total Probability (chapter 1), conditioning on the different possible values of Xt−1

P [Xt = j] =
S∑

i=1

P [Xt = j|Xt−1 = i]P [Xt−1 = i]

which can be re-written

π
(t)
j =

S∑

i=1

pijπ
(t−1)
i

or in matrix form

π(t) = π(t−1)P

Using this definition recursively, we have

π(t) = π(t−1)P = π(t−2)P 2 = π(t−3)P 3 = ... = π(2)P t−2 = π(1)P t−1

which gives a mechanism for computing the marginal probability after t steps.
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4.2.4 THE RANDOM WALK WITH ABSORBING STATES.

Suppose that the Markov chain is defined on the states X = {0, 1, 2, 3, ..., S}

P [Xt+1 = j|Xt = i] = pij =

{
p j = i+ 1

1− p j = i− 1

and zero otherwise, unless i = 0 when

P [Xt+1 = 0|Xt = 0] = 1 P [Xt+1 > 0|Xt = 0] = 0

so that the chain gets “stuck” in state 0, or unless i = S when

P [Xt+1 = S|Xt = S] = 1 P [Xt+1 < S|Xt = S] = 0

so the chain gets “stuck” in state S. Here the states 0 and S are termed absorbing states. This
type of Markov process is termed a random walk.

4.2.5 STATIONARY DISTRIBUTIONS OF MARKOV CHAINS

If the Markov chain does not have any absorbing states, or absorbing subsets of states, then
it is of interest to try to determine what happens to the marginal probability distributions of
the variables {Xt} as t becomes large. It can be shown that, in most cases, the Markov chain
eventually “settles down”, that is, that the marginal distribution stabilizes. That is, for the Markov
chain with transition matrix P , there exists a stationary or equilibrium probability distribution
π = (π1, π2, ..., πS) that satisfies

π = πP

so that, π(t) → π, or
(
π
(t)
1 , π

(t)
2 , ..., π

(t)
S

)
→ (π1, π2, ..., πS) as t→∞. This equilibrium distribution

can be computed algebraically, or using numerical computation.

EXAMPLE: Consider the Markov chain with transition matrix for S = 4

P =




0.6 0.1 0.2 0.1
0.1 0.7 0.1 0.1
0.2 0.2 0.5 0.1
0.1 0.3 0.1 0.5




Then, the equilibrium distribution π can be obtained by solving the system of equations

0.6π1 + 0.1π2 + 0.2π3 + 0.1π4 = π1
0.1π1 + 0.7π2 + 0.1π3 + 0.1π4 = π2
0.2π1 + 0.2π2 + 0.5π3 + 0.1π4 = π3

π1 + π2 + π3 + π4 = 1

Note that the last row of P is not used in the calculation, but is replaced by the probability
distribution constraint that the probabilities must sum to 1. This system can be solved (using
SPLUS or MAPLE) to find

π = (π1, π2, ..., πS) = (0.2414, 0.3851, 0.2069, 0.1667)

This stationary distribution can be obtained easily by computing the n-step ahead transition
matrix Pn = Pn = P × P × ...× P in the limit as n→∞; some SPLUS code to do this is below
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p_matrix(c(0.6,0.1,0.2,0.1,0.1,0.7,0.1,0.1,0.2,0.2,0.5,0.1,0.1,0.3,0.1,0.5),nrow=4,byrow=T)

p.power_p

for(i in 1:50){

p.power_p.power %*% p }

print(p.power)

which gives the result

[,1] [,2] [,3] [,4]

[1,] 0.2413793 0.3850575 0.2068966 0.1666667

[2,] 0.2413793 0.3850575 0.2068966 0.1666667

[3,] 0.2413793 0.3850575 0.2068966 0.1666667

[4,] 0.2413793 0.3850575 0.2068966 0.1666667

4.2.6 MARKOV MODELS FOR DNA SEQUENCES

The Markov process models described in the previous section can be used to model DNA sequences.
Genomic sequences are comprised of coding and non-coding regions, and small-scale features such
as splice sites, and thus some generalization of the models is required. However, if a homogeneous
segment can be identified, a Markov model might seem plausible. Here the S = 4 states are the
nucleotide codes (A,C,G,T ) and the transition matrix (to be identified numerically) is

P =




pAA pAC pAG pAT
pCA pCC pCG pCT
pGA pGC pGG pGT
pTA pTC pTG pTT




The S-Plus Exercise 1 was concerned with estimating the parameters in this matrix; in fact Max-
imum Likelihood Estimation gives a formal justification for the technique used there. However,
there is no reason to believe that the assumption of homogeneity will hold across large-scale genomic
regions.

4.2.7 HIDDEN MARKOV MODELS FOR DNA SEQUENCES

Here we note that Markov process models can be used to model the hidden or latent structure
in DNA sequences that determines whether a segment is a coding region, intron, splice site, C+G
islands etc. So far we have only modelled the observed nucleotide sequence using the Markov
structure. However, we can couple the Markov model for the observed structure with a Hidden
Markov Model (HMM) for the latent structure.

Suppose that a nucleotide position can be classified as being in a region of one of a number, H.
Then, we might assume that, within a homogeneous region labelled by h the observed nucleotide
sequence follows a Markov chain with transition matrix Ph To complete the specification, we
assume that there is a sequence in parallel to the nucleotide sequence, comprising region label
random variables H1,H2, ... which itself follows a Markov chain governed by transition matrix Pθ
where for i, j ∈ {1, 2, 3, ...,H}

P [Ht+1 = j|Ht = i] = Pr (Region type iat time t→ Region type jat time t+ 1) = θij

We will study the HMM specification in more detail in later sections.
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4.3 TESTS FOR A SINGLE DNA SEQUENCE

The discovery of structure in a DNA sequence is one of the primary goals of Bioinformatics. This
structure can take the form of nucleotide frequency changes, changes in dependence (as in the
Markov process construction), the appearance of large scale and small scale structures. We will
now study several types of analysis. First, we study some general but important results concerning
Order Statistics; these play a role in both the analysis of single sequences, and alignment theory.

4.3.1 EXTREME ORDER STATISTICS IN BIOINFORMATICS

Recall that the extreme order statistics derived from an independent and identically distributed
collection of random variables X1, ...,Xn are defined by

Y1 = X(1) = min {X1, ...,Xn} Yn = X(n) = max{X1, ...,Xn}

and have marginal cdfs and mass functions/pdfs given by

MAXIMUM fYn(yn) = n {FX(yn)}n−1 fX(yn)

FYn(yn) = {FX(yn)}n

MINIMUM fY1(y1) = n {1− FX(y1)}n−1 fX(y1)

FY1(y1) = 1− {1− FX(y1)}n

where fX and FX define the distribution of the original variables. For some of the distributions
we have studied, the distributions of the extreme order statistics also have simple forms.

EXAMPLE: If X1, ...,Xn ∼ Uniform(0, 1), then for 0 ≤ x ≤ 1

fX(x) = 1 FX(x) = x

and hence for the extreme order statistics

MAXIMUM fYn(yn) = n {FX(yn)}n−1 fX(yn) = nyn−1n

FYn(yn) = ynn

MINIMUM fY1(y1) = n {1− y1}n−1

FY1(y1) = 1− {1− y1}n

By extension, if X1, ...,Xn ∼ Uniform(0, L), then for 0 ≤ x ≤ L

fX(x) =
1

L
FX(x) =

x

L
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and hence for the extreme order statistics

MAXIMUM fYn(yn) = n
(yn
L

)n−1 1

L
=

nyn−11

Ln

FYn(yn) =
(yn
L

)n

MINIMUM fY1(y1) = n
{
1− y1

L

}n−1 1

L
=

n(L− y1)
n−1

Ln

FY1(y1) = 1−
{
1− y1

L

}n
= 1−

{
L− y1

L

}n

EXAMPLE: The lifetime (until degradation) of cellular proteins or RNA molecules can be well
modelled by an Exponential distribution (Ewens and Grant, p43). Suppose n such molecules are
to be studied, and their respective lifetimes represented by random variables X1, ...,Xn, regarded
as independent and identically distributed. Now, if X1, ...,Xn ∼ Exponential(λ), then for x > 0

fX(x) = λe−λx FX(x) = 1− e−λx

and hence for the extreme order statistics

MAXIMUM fYn(yn) = n
{
1− e−λyn

}n−1
λe−λyn = nλe−λyn

{
1− e−λyn

}n−1

FYn(yn) =
{
1− e−λyn

}n

MINIMUM fY1(y1) = n
{
1−

{
1− e−λy1

}}n−1
λe−λy1 = nλe−nλy1

FY1(y1) = 1−
{
1−

{
1− e−λy1

}}n
= 1− e−nλy1

These final results indicate that

Y1 ∼ Exponential(nλ)

and hence, by previous work

EfY1 [Y1] =
1

nλ
V arfY1 [Y1] =

1

n2λ2

It can be shown (with some work) that, to a reasonable approximation

EfYn [Yn] ≈
γ + logn

λ
V arfYn [Yn] ≈

π2

6λ2

where γ = 0.577216.

EXAMPLE: For discrete random variables X1, ...,Xn ∼ Geometric(θ), then for x = 1, 2, 3, ...

fX(x) = (1− θ)x−1θ FX(x) = 1− (1− θ)x

For convenience we adjust the distribution (as in the SPLUS package) so that for x = 0, 1, 2, .

fX(x) = φx(1− φ) FX(x) = 1− φx+1
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where φ = 1− θ. In this adjusted distribution, for the extreme order statistics, the cdfs are given
by

MAXIMUM FYn(yn) =
{
1− φyn+1

}n

MINIMUM FY1(y1) = 1−
{
1−

{
1− φy1+1

}}n
= 1− φn(y1+1)

and hence, for Yn we have

P [Yn ≤ yn] =
{
1− φyn+1

}n

P [Yn ≥ yn] = 1− P [Yn > yn − 1] = 1− FYn(yn − 1) = 1− {1− φyn}n

and thus

P [Yn = yn] = P [Yn ≤ yn]− P [Yn ≤ yn − 1] =
{
1− φyn+1

}n − {1− φyn}n

Now, φ is a probability, so we can re-parameterize by writing φ = e−λ for some λ > 0 and hence

P [Yn ≤ yn] =
{
1− e−λ(yn+1)

}n

P [Yn ≥ yn] = 1−
{
1− e−λyn

}n

P [Yn = yn] =
{
1− e−λ(yn+1)

}n −
{
1− e−λyn

}n

which are similar formulae to the Exponential case above. It can be shown (again after some
work) that

EfYn [Yn] ≈
γ + logn

λ
− 1

2
V arfYn [Yn] ≈

π2

6λ2
+

1

12

that is, very similar to the results for the Geometric distribution above.

SOME APPROXIMATIONS

For large n, some further approximations can be made: If we let

µn = EfYn [Yn] σ2n = V arfYn [Yn]

then it can be shown that

P [Yn ≤ yn] ≈ exp

{
− exp

{
−

[
π(yn − µn)

σn
√
6

+ γ

]}}

so that in the Exponential case, where

µn ≈
γ + logn

λ
σ2max ≈

π2

6λ2

then

P [Yn ≤ yn] ≈ exp{−n exp{−λyn}}
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which can be compared with the exact result above

P [Yn ≤ yn] =
{
1− e−λyn

}n

In the discrete Geometric case, it can be using similar approaches that for large n

exp{−nC exp {−λyn}} ≤ P [Yn ≤ yn] ≤ exp{−nC exp{−λ(yn + 1)}}

and therefore that

1− exp{−nC exp {−λyn}} ≤ P [Yn ≥ yn] ≤ 1− exp{−nC exp{−λ(yn − 1)}}

where the constant C is a constant to be defined. These results will provide the probabilistic basis
for sequence analysis via BLAST.

EXAMPLE: Dependent random variables
Suppose that n points are selected uniformly on the interval (0, 1). These points define n + 1
intervals of random lengths say U1, U2, ...,Un+1 for which

U1 +U2 + ...+ Un+1 = 1

The random variables U1, U2, ..., Un+1 are not independent so the theory derived above is not
applicable. It can be shown that if

Umin = min {U1, U2, ...,Un+1}

then

P [Umin ≤ u] = 1− (1− (n+ 1)u)n 0 < u <
1

n+ 1

so that

FUmin(u) = 1− (1− (n+ 1)u)n

FUmin(u) = n(n+ 1)(1− (n+ 1)u)n−1

These results are important in the analysis of r-scans; if we wish to test that the occurrences of
a particular nucleotide pattern or “word” occur uniformly in a genomic segment of length L, then
we could use

4.3.2 LONG SEQUENCES OF NUCLEOTIDE REPEATS

Suppose that interest lies in detecting whether a nucleotide is present in a genomic segment in long
repeat stretches. The statistical objective is to process a segment of length N say, and to test the
hypothesis H0 that the sequence is random and independent against the hypothesis H1 that
there is evidence of non-randomness or a lack of independence

From the start of the segment, reading “left-to-right” along the nucleotide sequence we can
gather data on run-lengths. Suppose that the nucleotide of interest, A say, is coded 1 (success)
and the other nucleotides are coded 0 (failure). Then, the sequence

CGAGAAGATATAAATTCAAATA
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codes as

0010110101011100011101

giving run lengths of successes of

0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 0, 0, 3, 0, 1

Now, if

H0 : Sequence is realization of a random and independent sampling process

then under H0 it can be shown that the distribution of run-lengths should follow an adjusted
Geometric (1− pA) distribution, that is, if Xi is defined the run-length of run i, then

fXi(x) = (1− pA)p
x
A x = 0, 1, 2, ...

where pA is a hypothesized marginal probability of nucleotide A. Furthermore, under H0, the
collection of run-length random variables, X1, ...,Xn derived from a sequence are independent and
identically distributed.

Now suppose that

Yn = max {X1, ...,Xn}

then using the extreme value theory results it can be shown that (under H0)

FYn(y − 1) = P [Yn < y] =
(
1− pyA

)n
=⇒ P [Yn ≥ y] = 1−

(
1− pyA

)n

Hence, for a formal significance test of the hypothesis H0, we may use the observed version of Yn
(that is, the sample maximum) as the test statistic, and compute a p-value p

p = P [Yn ≥ yn] = 1−
(
1− pynA

)n

Now, note that n must be specified before this p-value can be computed (effectively, we need to
choose n large enough) A recommended choice is n ≈ (1− pA)N , giving that

p ≈ 1−
(
1− pynA

)(1−pA)N

which using an exponential approximation gives

p ≈ 1− exp{−(1− pA)Npyn}

Hence, for a test at the α = 0.05 significance level, we must check whether the computed p is less
than α. If it is, we reject the hypothesis H0 that the sequence is random and independent.
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4.3.3 R-SCANS

In r-scan analysis, interest lies in detecting short nucleotide “words” in a long genomic segment of
length L. If L is very large, then the locations of the occurrences of the words, can be regarded as
points in the (continuous) interval (0, L), or, without loss of generality, the interval (0, 1) . Suppose
that the word is detected a total of k times. An appropriate test of the hypothesis H0 that the
locations are uniformly distributed in (0, 1) can be based on the test statistic random variable Yk+1
where

Yk+1 = “the maximum inter-location length”

(note that the k points segment the genomic interval into k + 1 regions of lengths U1, U2, ..., Uk+1.
Then

Yk+1 = max{U1, U2, ..., Uk+1}

Again, to construct the significance test and calculate a p-value, we seek the distribution of this
maximum order statistic. However, previous techniques cannot be used, as the random variables
U1, U2, ..., Uk+1 are not independent. With much work, it can be shown that, as k becomes
large, under H0,

p = P [Yk+1 ≥ y] ≈ 1− exp
{
−(k + 2)e−(k+2)y

}

which may be re-written

p = P

[
Yk+1 ≥

log(k + 2) + y

(k + 2)

]
≈ 1− exp

{
−e−y

}

This may be generalized to enable tests based on other test statistics to be carried out, such as
those based on “r-scan” values (maxima of the sums of r adjacent inter-point intervals. Finally,
as an alternative test, we could instead use the minimum order statistic Y1 Again, after much
work, it can be demonstrated that under H0 the p-value is given (approximately) by

p = P [Y1 ≤ y] ≈ 1− exp
{
−y(k + 2)2

}
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4.4 ANALYSIS OF MULTIPLE BIOLOGICAL SEQUENCES

Perhaps the most important aspect of the analysis of biological sequences is the search for se-
quence similarity, as this may give insight into the evolutionary relationships (homologies) between
sequences, or into the biological function associated with a particular genomic region or protein
sequence. The an initial analysis might be based on frequency (“first-order”) comparison (of nu-
cleotides/amino acid residues), whereas more sophisticated analyses will concentrate on studying
series dependence or association within the sequences (in a “second-order” comparison).

4.4.1 MARGINAL FREQUENCY ANALYSIS

The most rudimentary assessment of sequence similarity that can be carried out is one based on the
relative marginal frequencies of the nucleotides or amino acids within each sequence. This can be
done within the context of a Goodness-of-Fit test. Consider the table of observed frequencies
corresponding to two nucleotide sequences

Nucleotide
A C G T Total

Sequence 1 n11 n12 n13 n14 n1.
Sequence 2 n21 n22 n23 n24 n2.

Total n.1 n.2 n.3 n.4 n

We wish to test the hypothesis H0 that the two sequences have the same (marginal) nucleotide
probabilities, pA = p1, pC = p2, pG = p3 and pT = p4. To carry out the test, we first compute the
estimates of these nucleotide probabilities (using maximum likelihood estimation) under the
assumption that H0 is true; it turns out that the estimates and expected or fitted values if
H0 is true are given by

p̂1 =
n.1
n

p̂2 =
n.2
n

p̂3 =
n.3
n

p̂4 =
n.4
n

=⇒ n̂ij = ni.p̂j =
ni.n.j
n

i = 1, 2, j = 1, 2, 3, 4

There are two test statistics that may be used; the first is the Chi-squared statistic or the
Likelihood Ratio (LR) statistic

χ2 =
2∑

i=1

4∑

j=1

(nij − n̂ij)
2

n̂ij
LR = 2

2∑

i=1

4∑

j=1

nij log
nij
n̂ij

Both of these statistics have an approximate Chi-squared distribution χ2(r−1)(c−1) = χ23 distri-
bution, again given that H0 is true. Typically, a significance level of α = 0.05 is used for this test,
and the critical value in a one-tailed test of the hypothesis is at the 0.95 point of this distribution,
that is, at 7.81.

EXAMPLE: Consider the two sequences detailed in the following table:

Nucleotide
A C G T Total

Sequence 1 273 233 258 236 1000
Sequence 2 281 246 244 229 1000

Total 554 479 502 465 2000

For these sequences, the test statistics are computed to be χ2 = 0.964 and LR = 0.964, and thus
there is no evidence to reject H0 that the nucleotide probabilities are the same for the two
sequences.
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4.4.2 PROBABILISTIC ASSESSMENT OF ALIGNMENTS

In the search for, for example, sequence homology, a key objective is to assess the degree of similarity
between two aligned biological sequences. As an illustration, it is important to be able to assess
the similarity between two DNA sequences

GGAGACTGTAGACAGCTAATGCTATA
GAACGCCCTAGCCACGAGCCCTTATC

that match exactly in positions 1,3,6,9,10,11,13,14,23,24 and 25, allowing for the fact that evolu-
tionary forces (substitution/mutation, deletion and insertion) will disrupt the exact matching of
truly homologous sequences. In fact, is important to allow for partially aligned sequences

CGGGTA−−TCCAA
CCC − TAGGTCCCA

where the symbol − indicates a wild-card position. Alignments are categorized as

• global - when entire sequences are aligned

• local - when only subsequences are aligned

• gapped/ungapped - when the wild-cards − are allowed or otherwise

• pairwise/multiple - when two or more than two sequences are processed.

EXAMPLE: GLOBAL UNGAPPED PAIRWISE ALIGNMENT
For a probabilistic assessment of the degree of global alignment of two sequences, we use the theory
of maximal runs in binary sequences developed above. For the two ungapped sequences, write a 1
(“success”) if there is a match at a given position, and a 0 (“failure”) otherwise, so that the entire
match binary sequence is

00100100111011000000001110

with runs of successes of lengths 1, 1, 3, 2 and 3, with zero run lengths otherwise. Applying
the previous theory, if we consider hypotheses H0 that the sequences are both randomly gener-
ated, the collection of run-length random variables, X1, ...,Xn derived from the two sequences are
independent and identically distributed as Geometric(p) random variables, where

pm = p2A + p2C + p2G + p2T

Again, considering the random variable Yn = max{X1, ...,Xn} as the test statistic, then under H0

FYn(y) = P [Yn < y] = (1− pym)
n

so that we have the tail probability calculation

P [Yn ≥ y] = 1− (1− pym)
n

For a formal significance test of the hypothesis H0, therefore, we may again use the maximum run
length as the test statistic, and compute a p-value, p

p = P [Yn ≥ yn] = 1− (1− pynm )n
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For two sequences of length N , we have that is n ≈ (1− pm)N , giving that

p ≈ 1− (1− pynm )(1−pm)N

≈ 1− exp {−(1− pm)Npyn}

For a test at the α = 0.05 significance level, we must check whether the computed p-value is less
than α. If it is, we reject the hypothesis H0 that the sequence is random and independent. For
the sequences above, yn = 3, and if one of the assumptions of H0 is that pA = pC = pG = pT = 1

4
so that pm = 1

4 , then the approximate p-value is

1−
(
1−

(
1

4

)3)26×(3/4)

= 0.264

which is not less than α = 0.05, and so there is no evidence to reject H0, and hence there is
no evidence of alignment (or homology). In fact, using this approximation, we would need a run
length

yCRIT ≥
log

(
1− (1− 0.05)(1/26)×(4/3)

)

log
(
1
4

) = 4.29

to reject the null model.

EXAMPLE: LOCAL UNGAPPED PAIRWISE ALIGNMENT
For a probabilistic assessment of the degree of local alignment of two sequences, we carry out a
similar hypothesis test, using match statistics as test statistics. Instead of considering runs of
matches (“successes”), we consider runs of partial matches. as follows. Let random variable
X be defined as the length of a subsequence of the original sequence that contains at most k
mismatches (“failures”). The length X of the subsequence is the number of positions up to but
not including the (k + 1)st mis-match; under H0

H0 : Alignment at random without homology

the probability distribution of such a variable is the Negative Binomial (generalized geometric)
distribution , and the probability distribution (cdf) ofX is essentially given by the negative binomial
mass function as

FX(x) = P [X ≤ x] =
x∑

j=k

(
j

k

)
pj−km (1− pm)

k+1 x = k, k + 1, k + 2, ...

For a test statistic, we will again consider a maximum order statistic Yn = max {X1, ...,Xn} derived
from the analysis of n subsequences.

It is clear from the above formulae that both the definition of the test statistic, the calculation
of the null distribution, and p-value etc, is complex, and will be more complicated if the model
for sequence generation is generalized to be more realistic. However, the principles of statistical
hypothesis testing can be applied quite generally.
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4.4.3 MONTE CARLO SIMULATION

Unfortunately, the usual order statistics computations and approximations cannot be applied in
general here, as the analysis would involve the study of overlapping sequences, giving variables
X1,X2,X3... etc that are not independent. In fact, the simplest way to proceed in the calculation
of p-values is to use simulation to generate a look up table of probabilities with which the observed
maximum run-length can be compared. Broadly, the simulation proceeds as follows:

1. Generate two sequences of length N under the model implied by H0, that is, two independent
sequences with probabilities pA, pC , pG, pT for each nucleotide.

2. For different values of k (k = 0, 1, 2, 3, ...) trawl the sequences to find the longest (contiguous)
subsequence which contains at most k mismatches. Record the length y of this longest
subsequence.

3. Return to (1) and repeat a large number (1000000 say) of times and form a two-way table of
the frequencies with which the longest subsequence containing k mismatches was of length
y (y = k, k + 1, k + 2, ...)

4. Convert the frequencies into probabilities by dividing by the number of times the simulation
is repeated.

This Monte Carlo simulation procedure often gives a probability distribution of sufficient accu-
racy to allow a p-value to be computed.

4.4.4 ALIGNMENT ALGORITHMS

It is possible to align a pair of sequences without explicit reference to probabilistic rules. The
general approach to deterministic alignment is to utilize a scoring rule that quantifies the degree
of alignment between the sequences. One simple scoring rule scores the alignment by computing the
difference between the number of matches and the number of mismatches and wild-cards. More
sophisticated algorithms score matches according to the similarity between the characters at a
putative match position.

Two common “Dynamic Programming” algorithms are used to perform deterministic align-
ments; they are

• The Needleman - Wunsch algorithm

• The Smith - Waterman algorithm

Both algorithms can be modified to incorporate gaps in alignments and to penalize them appro-
priately. The Smith-Waterman algorithm is regarded as a superior algorithm as it computes the
optimal alignment between two sequences in a shorter computational time. Neither algorithm is
explicitly probabilistic in nature, but can be regarded (loosely) as a form of maximum probabil-
ity/maximum likelihood procedure.
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4.5 PROTEINS AND PROTEIN SUBSTITUTION MATRICES

For the alignment of protein sequences, special scoring rules that correctly quantify the degree
of mismatch between two amino acid residues that may lie in corresponding positions in the two
sequences. The scoring rule used is probabilistic in nature; it quantifies and utilizes the relative
probabilities that two residues x and y say appear in corresponding positions due to actual homology
and substitution compared with random chance positioning.

Let px and py denote, respectively, the probabilities that residues x and y appear in a given
position in a protein sequence, and let pxy denote the probability that x and y appear in that
position due to homology and substitution. Consider the quantities

exy =
2pxpy
pxy

(if x = y) exy =
pxpy
pxy

(if x = y) sxy = −2 log2 exy

where exy is the relative likelihood of chance alignment over homology and sxy is a scoring
function that is positive if homology is more likely than chance alignment.

The scores sxy can be used as the basis for protein sequence alignment. Typically, the prob-
abilities px, py and pxy that appear in the equations above are either estimated using maximum
likelihood from protein sequence data, or derived from look-up tables such as the Point Ac-
cepted Mutation (PAM) that is computed using maximum likelihood in a Markov Chain
model of the evolutionary processes involved, or Block Substitution Matrices (BLOSUM)

EXAMPLE : THE BLOSUM50 MATRIX

A R N D C Q E G H I L K M F P S T W Y V B Z X *

A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1 0 -4

R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 0 -1 -4

N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 0 -1 -4

D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 4 1 -1 -4

C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4

Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 3 -1 -4

E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4

G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1 -4

H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 0 0 -1 -4

I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 -3 -3 -1 -4

L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 -4 -3 -1 -4

K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 0 1 -1 -4

M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 -3 -1 -1 -4

F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 -3 -3 -1 -4

P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -1 -2 -4

S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 0 0 0 -4

T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 -1 -1 0 -4

W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 -4 -3 -2 -4

Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 -3 -2 -1 -4

V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 -3 -2 -1 -4

B -2 -1 3 4 -3 0 1 -1 0 -3 -4 0 -3 -3 -2 0 -1 -4 -3 -3 4 1 -1 -4

Z -1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4

X 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 -1 -1 -1 -4

* -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 1
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4.6 THE STATISTICS OF BLAST AND PSI-BLAST

As a method to provide an assessment of sequence homology, the BLAST/PSI-BLAST approaches
and technologies are perhaps the most widely used in biological sequence analysis. Originally
designed for DNA sequences but more recently adapted to deal with protein sequences, the BLAST
approach provides a simple heuristic means of quantifying the degree of alignment between two or
more sequences that may be implemented routinely with reference to an established database of
known sequences.

The essence of a BLAST analysis lies in a heuristic statistical hypothesis test; by carefully
setting/estimating a few fundamental parameters, the null distribution of an alignment test statistic
can be evaluated, and the p-value in a test of the null hypothesis of no homology can be evaluated
and the appropriate conclusions drawn. We begin this section by describing the key components
of the test, before studying the mathematical background in more detail.

4.6.1 BLAST: THE BASIC COMPONENTS

If we are to view the BLAST calculation as a hypothesis test, then we need to identify the five
key components of such a test appropriate to biological sequence alignment. Recalling Chapter 3
material, we have that a hypothesis test has five components, namely

• the TEST STATISTIC

• the NULL DISTRIBUTION

• the SIGNIFICANCE LEVEL, denoted α

• the P-VALUE, denoted p.

• the CRITICAL VALUE(S).

For BLAST, we have

• the test statistic is an alignment score S

• the null distribution is an extreme value distribution, of a similar form to those derived
in section 4.3.1

• α = 0.05, with corrections for multiple testing

• the p-value is computed in terms of the E-VALUE which, for two sequences of length n and
m is defined as

E = Kmn exp{−λS} p = 1− e−E

E is the expected number of “high scoring segment” pairs of sequences, and K and λ are
parameters to be specified or estimated from appropriate sequence databases

• Critical values in the test are evaluated from the null distribution in the usual way
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4.6.2 STOCHASTIC PROCESS MODELS FOR SEQUENCE ALIGNMENT

To assess whether a given sequence alignment constitutes evidence for homology, it is critically
important to be able to assess the statistical significance of the alignment, that is, in short, what
degree of alignment can be expected by chance alone For a statistical analysis to be carried out
(in a formal hypothesis testing framework), as in previous sections, we are required to compute
the distribution of some test statistic under the assumption that a null hypothesis H0 is true.
In practice, chance alignments could arise from non-homologous sequences, or from related but
structurally altered (shuffled) sequences, or from sequences that are generated randomly based
upon a DNA or protein sequence model. For the required hypothesis test, statistical results are
usually only available analytically (and even then often only approximately) using the last of these
definitions, whereas empirical results, based on for example Monte Carlo simulation, may use any
of the definitions.

Assessment of the statistical significance of the alignment of two biological sequences is based
on properties of a discrete state stochastic (Markov) process similar to the Markov chains
introduced in Section 4.1. Consider first two DNA sequences of equal length, and the positions at
which they match/align (coded 1) similar to the notation of previous sections:

G G A G A C T G T A G A C A G C T A A T G C T A T A
G A A C G C C C T A G C C A C G A G C C C T T A T C

1 0 1 0 0 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0

Now, suppose that when the Match sequence is read from left to right a Match is given an alignment
“score” of +1, whereas a non Match is given a score of -1, and a running or cumulative score is
recorded for each position

Sequence 1 G G A G A C T G T · · · G C T A T A
Sequence 2 G A A C G C C T A · · · C T T T T C

Match 1 0 1 0 0 1 0 0 1 · · · 0 0 1 1 1 0

Score +1 −1 +1 −1 −1 +1 −1 −1 +1 · · · −1 −1 +1 +1 +1 −1
Cumulative 1 0 1 0 −1 0 −1 −2 −1 · · · −5 −6 −5 −4 −3 −4

If Xi is the discrete random variable recording the match score at position i so that

Xi =

{
+1 Match

−1 non Match

and Si is the discrete random variable recording the cumulative match score at position i then by
definition

Si =
i∑

j=1

Xj = Si−1 +Xi

and hence the sequence of random variables S1, S2, S3, ... form a Markov process that is in fact a
random walk.on the integers (note that this random walk does not have any absorbing states).
For the two sequences above, the complete observed sequence s1, s2, s3, ..., s25, s26 is given by

CUMULATIV E SCORE

1, 0, 1, 0,−1, 0,−1,−2,−1, 0, 1, 0, 1, 2, 1, 0,−1,−2,−3,−4,−5,−6,−5,−4,−3,−4
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Note that such a sequence of random variables can be defined and observed whatever scoring method
is used to associate alignment scores with positions in the sequence; this is of vital importance when
alignment of protein sequences is considered.

We wish to use the observed sequence s1, s2, s3, ... to quantify the degree of alignment between
the sequences; this is achieved as follows. A exact local alignment between the sequences is a
subsequence where the two sequences match exactly. In the sequences above, the exact local
alignments are observed at positions 1,3,6,9-11,13-14 and 23-25. Next consider the ladder points,
that is, those positions in the sequence at which the cumulative score is lower than any previous
point; the ladder points

LADDERPOINTS 0 5 8 19 20 21 22
SCORE 0 −1 −2 −3 −4 −5 −6

Finally, consider the successive sections of the walk between the ladder points. In particular, con-
sider the excursions of the random walk, that is, the successive differences between themaximum
cumulative score for that subsection and the score at the previous ladder point.

SUBSECTION 1 2 3 4 5 6 7
Begins at Ladder Point 0 5 8 19 20 21 22
Ladder Point Score 0 −1 −2 −3 −4 −5 −6 (1)

Ends at 4 7 18 19 20 21 26
Maximum subsection score 1 0 2 −3 −4 −5 −3 (2)
Achieved at position(s) 1, 3 6 14 19 20 21 25

Excursion 1 1 4 0 0 0 3 (2)-(1)

The alignment, ladder points, maximum subsection scores and excursions can be displayed graph-
ically, as in Figure (4.1)

Position

S
co

re

0 5 10 15 20 25

-6
-4

-2
0

2
4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

G G A G A C T G T A G A C A G C T A A T G C T A T A

G A A C G C C C T A G C C A C G A G C C C T T A T C

Figure 4.1: Ladder points in BLAST Analysis

The excursions measure the degree of local alignment between the two sequences; reading from left
to right along the alignment, within each subsection (between the ladder points) the magnitude of
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the excursion measures the cumulative evidence that the sequences are evolutionarily related within
a localized window. Consider, for example subsection 3 that starts at the ladder point at position
8 (cumulative score -2) and extends to position 18 (before the next ladder point at position 19).
There is a close (but not exact) alignment between the first 7 positions, and the degree of support
for true alignment peaks at position 14 (cumulative score +4), before declining. Note that, due
to the Markovian nature of the underlying process, the sequence subsections between the ladder
points have identical probabilistic properties.

In biological sequence analysis, the objective is to optimize and quantify the statistical signif-
icance between two arbitrary sequences. Some generalizations to the stochastic process model
described above are necessary (to allow for gapped and multiple alignments, analysis of sequences
of different lengths etc), but in principle the method is straightforward. Practically, when, for
example interrogating a protein database for matches to a potentially novel sequence, it is often
sufficient to specify some threshold cumulative score value that indicates an acceptable alignment.
The choice of such a threshold is clearly quite arbitrary, but some guidance as to what constitutes a
sensible threshold value may be obtained by studying the probabilistic properties of the stochastic
process models described above.

4.6.3 APPLICATIONS OF RANDOM WALK THEORY TO BLAST

The theory derived in Appendix A can be used to calibrate the results obtained from BLAST/PSIBLAST
analyses. The objective is to compute the constants C, θ and A for use in equation (A.7) in the par-
ticular case of DNA/protein sequence alignment. Throughout, the null hypothesisH0 at the centre
of the alignment assessment will be that the two (or more) sequences are unrelated in evolutionary
terms, and also that the nucleotides/amino acids that comprise the sequence

For two sequences of length N , let

pj = P [Nucleotide/Amino-acid character at any position in the sequence]

so that the probability of observing the (ordered) pair of characters (j, k) (i.e. for sequence 1, then
sequence 2) at a given position underH0 is merely pj×pk, whereas under the alternative hypothesis
of an evolutionary relationship, the probability of observing the ordered pair is q (j, k) say.

Now, recall the discussion of substitution matrices above, where for the alignment of two
characters x and y in a given position we defined a likelihood ratio chance alignment over
homology, exy and a score sxy, given by

exy =





2pxpy
pxy

x = y

pxpy
pxy

x = y
sxy = −2 log2 exy (4.1)

where, ultimately, the scores comprise the substitution matrix; essentially we replace x by j and y
by k in the development below.

Now, we wish to compute some key constants C, θ and A that appear below in equations (A.5-
(A.8) to apply the random walk theory. It transpires that the scores correspond closely to the
step sizes, that is, the amount by which the cumulative score can change in the random walk at
any position, that appear in the random walk theory above. Let the step size associated with a
character pair (j, k) be S (j, k). From (A.5), under H0 where the probability of observing a step
of size S (j, k) is pjpk , we have that θ satisfies

∑

j,k

pjpke
θS(j,k) = 1 (4.2)
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In most BLAST implementations, the constant θ is denoted λ; there is no analytic solution to
(4.2), but θ (or, from now on, λ) can be obtained numerically. Now, from the above considerations,
we have for the score function

S (j, k) =
1

λ
log

q(j, k)

pjpk
⇐⇒ q(j, k) = pjpke

λS(j,k) (4.3)

This quantity q(j, k) is defined via substitution matrix, or by point mutation arguments; if m
(n)
jk is

the probability that character j mutates to k in n evolutionary time periods, then it can be shown
that

S (j, k) =
1

λ
log

m
(n)
jk

pk
q(j, k) = pjm

(n)
jk

This score function can be considered from an Entropy or Relative Entropy perspective (recall
Chapter 2); from (4.2) and (4.3) we have that the q(j, k) form a probability distribution (in fact, the
probability distribution of character pairs under the alternative hypothesis H1 that the sequences
are evolutionarily related) and that the score S (j, k) is the support for H1 over H0. Hence,
under H1, the expected score is

H =
∑

j,k

q(j, k) log
q(j, k)

pjpk
=

∑

j,k

q(j, k)λS (j, k) = λ
∑

j,k

q(j, k)S (j, k) = λEq [S] (4.4)

which is merely the relative entropy of the two distributions. Here Eq [S] is the expected score
under the alternative hypothesis. For high-scoring segments (i.e. where the degree of alignment is
high), we therefore have that the expected score is H/λ.

The degree of alignment between two sequences can be quantified using statistical significance
testing. If the maximum alignment statistic Ymax is obtained, then for any y

1− e−Ke
−λy ≤ P

[
Ymax >

1

λ
logN + y

]
≤ 1− e−Ke

−λ(y−1)
(4.5)

where N is the sequence length and K = Ce−λ/A, where C and A are the constants defined
previously. The central probability can be re-written

P

[
Ymax >

1

λ
logN + x

]
= P [λYmax − logN > y]

which motivates the definition of the normalized score

S′ = λYmax − log (NK) (4.6)

that allows (4.5) to be re-written exp
{
−eλe−s

}
≤ P [S′ ≤ s] ≤ exp {−e−s} , and thus the p-value

associated with any normalized score s′ = λymax − log (NK) is

p ≈ 1− exp
{
−e−s′

}
(4.7)

The bit score reported by BLAST is defined by

λYmax − logK

log 2
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Another quantity reported by BLAST is the expected number of high-scoring excursions,E′, defined
by

E′ = NKe−λymax (4.8)

that is the expected number of excursions that (would) exceed the observed maximum excursion
for aligned sequences of length N . It is easily seen that

S′ = − logE′ ∴ p ≈ 1− exp
{
−E′

}
⇒ E′ = − log (1− p) ≈ p if pis small (4.9)

thus we have a further approximation to the p-value in terms of E′ (that is merely a function of
the observed data an modelling assumptions).

4.6.4 THE KARLIN-ALTSCHUL SUM STATISTIC

Another useful test statistic is the Karlin-Altschul Sum statistic which considers not only the
largest observed excursion of the alignment score random walk, but instead the r largest excursions,
for some r = 1, 2, 3, ... to be specified. Denote by Y1, Y2, ..., Yr the r largest excursions where
Y1 ≥ Y2 ≥ ... ≥ Yr, and consider the corresponding normalized scores

Si = λYi − log(NK) i = 1, ..., r

Then let

Tr = S1 + ...+ Sr =

r∑

i=1

Si

be the sum of these normalized scores; Tr is the Karlin-Altschul Sum statistic. It can be shown
that

P [Tr ≥ t] ≈ e−ttr−1

r!(r − 1)!
(4.10)

where the approximation holds for t > r(r + 1). Equation (4.10) gives a means of calculation of a
p-value to quantify the statistical significance of the alignment.

4.6.5 UNALIGNED SEQUENCESAND SEQUENCES OFDIFFERENT LENGTHS

So far we have only considered the alignment of ungapped sequences of the same length. Finally, we
consider more general and thus more practical situations where the sequences are arbitrary, that is,
not aligned and of different lengths . Our objective will be to apply the theory of previous sections
to find an optimal alignment amongst all possible (ungapped,overlapping) local alignments.

For two sequences of length N1 and N2, there are N1 + N2 − 1 possible local alignments in
which there is an overlapping segment between the two sequences. For each of these alignments,
a random walk construction can be used to quantify the degree of alignment as above. The total
number of (distinct) character comparisons is N1×N2 (all characters from one sequence compared
with all characters from the other at some stage), and it is this quantity that is used to generalize
the theory of previous sections. In fact, the normalized score in (4.6) becomes

S′ = λYmax − log (N1N2K)
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and this newly defined score can be used in (4.7) to get an approximate p-value. Now, as some of
the N1 +N2 − 1 alignments are for very short sequences, a correction is made for edge effects; in
fact the edge-effect corrected normalized score and expected number of high scoring excursions are

S′ = λYmax − log
(
N ′
1N

′
2K

)
E′ = N ′

1N
′
2Ke−λymax

where N ′
i = Ni−λYmax/H, for i = 1, 2, and where H is the entropy quantity that appears in (4.4).

For the Karlin-Altschul Sum statistic, the correction is different, with

(r − 1) +
λ

H

(
1− r + 1

r
f

) r∑

i=1

Yi

being subtracted from N1 and N2 where f is a fixed overlap adjustment factor taken to be
around 0.1− 0.2.

4.6.6 CORRECTIONS FOR MULTIPLE TESTING

An issue to be considered here is that of multiple testing (section 3.9); if a sequence of different
values of r = 1, 2, 3, ... are used then a sequence of hypothesis tests is implied, and because of this
a numerical correction to the p-values calculated must be made. For r = 1, one such correction
implies that

p ≈ 1− e−E where E = 2N ′
1N

′
2Ke−λymax

whereas for r = 2, 3, 4, ... the corrected p-value is the value given by (4.7) divided by a factor
(1− π)πr−1.

4.6.7 BLAST FOR DATABASE QUERIES

Perhaps the most common use of BLAST is to interrogate databases for matches/homologies for a
potentially novel sequence. In principle, this database search should check alignment against all
sequences stored in the database, in order to identify high scoring sequences or segments. With
such a procedure, however, adjustments to the statistical quantities derived above need to made in
advance of a formal statistical test.

Suppose that, using the alignment methods described above a collection of p-values are obtained
for all the sequences in a database for alignment with some test sequence. Suppose that the highest
alignment score obtained is υ for some segment of lengthN2. Then (using a Poisson approximation)
the probability that, in the database search there is at least one segment that scores at least υ is

1− e−E where E = 2N ′
1N

′
2Ke−λυ

Then, if the total length of the database interrogated is D then the expected number of segments
that score at least υ is approximately

ED =
D

N2

(
1− e−E

)

as the entire database is a factor of D/N2 times longer than the sequence that gave the highest
alignment score. Hence an appropriate approximation to the required p-value is

pD = 1− e−ED

For tests involving the sum statistics of section 4.5.4, a similar correction to the expected value and
p-value is obtained.
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4.6.8 A TYPICAL BLAST EXAMPLE

Using BLASTP (with default setting E = 10, BLOSUM 62 matrix), on the following protein
sequence (NCBI accession number P40582)

1 mslpiikvhw ldhsrafrll wlldhlnley eivpykrdan frappelkki hplgrsplle

61 vqdretgkkk ilaesgfifq yvlqhfdhsh vlmsedadia dqinyylfyv egslqpplmi

121 efilskvkds gmpfpisyla rkvadkisqa yssgevknqf dfvegeiskn ngylvdgkls

181 gadilmsfpl qmaferkfaa pedypaiskw lktitseesy aaskekaral gsnf

we obtain the following output:

• a clickable, graphical display of alignments

• a list of the aligned sequences and the E-scores

• detailed information on each aligned sequence (including the target sequence)

• a character by character description of matches, wild card matches, and insertions

• a final summary of the analysis

Matrix: BLOSUM62

Gap Penalties: Existence: 11, Extension: 1

Number of Hits to DB: 24,178,712

Number of Sequences: 1578346

Number of extensions: 994651

Number of successful extensions: 2068

Number of sequences better than 10.0: 21

Number of HSP’s better than 10.0 without gapping: 6

Number of HSP’s successfully gapped in prelim test: 15

Number of HSP’s that attempted gapping in prelim test: 2040

Number of HSP’s gapped (non-prelim): 22

length of query: 234

length of database: 517,180,703

effective HSP length: 121

effective length of query: 113

effective length of database: 326,200,837

effective search space: 36860694581

effective search space used: 36860694581

T: 11

A: 40

X1: 16 ( 7.4 bits)

X2: 38 (14.6 bits)

X3: 64 (24.7 bits)

S1: 41 (21.8 bits)

S2: 71 (32.0 bits)
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4.7 HIDDEN MARKOV MODELS

A brief discussion of the role of HiddenMarkov Models (HMMs) was given in section (4.2.7); here we
study the statistical aspects (estimation, hypothesis testing etc.) in relation to biological sequences
in more detail. Recall that previously, the character (nucleotide/amino acid) in a given position
can be classified was be classified as being part of a region of one of a number, H, of types, and that
within a homogeneous region labelled by k the observed nucleotide sequence follows a Markov chain
with transition matrix Pk , and finally that there is a latent sequence in parallel to the observed
sequence, comprising region label random variables H1,H2, ... which itself follows a Markov chain
governed by transition matrix Pθ where

P [Ht+1 = j|Ht = i] = Pr (Region type iat time t→ Region type jat time t+ 1) = θij i, j ∈ H
(4.11)

which may be represented as

Observed sequence X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Latent sequence H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

For illustration consider a nucleotide sequence, with Xi ∈ {A,C,G,T}, near the boundary of a
coding/non-coding region. Let H = {0, 1} be the set of available region types, where 0 classifies
a non-coding region and 1 classifies a coding region. If the coding region begins at nucleotide 7,
then a possible configuration would be

Observed sequence A C T C G A A C C G
Latent sequence 0 0 0 0 0 0 1 1 1 1

so that the realized latent sequence is

h = (h1, h2, ..., h10) = (0, 0, 0, 0, 0, 0, 1, 1, 1, 1)

However, of course, in practice the latent sequence is not observed and therefore the statistical
analysis issues centre on inference about (estimation of) the latent sequence {Ht, t ≥ 1} and the
parameters in the Markov transition matrices Ph, h ∈ H, and Pθ.

4.7.1 LIKELIHOOD INFERENCE FOR HIDDEN MARKOV MODELS

The statistical analysis of biological sequences via HMMs is based on probabilistic ideas used to
construct likelihood functions. First we study the analysis in full generality before restricting
attention to specific cases. For an observed sequence of length n, denote by x = (x1, x2, ..., xn)
and h = (h1, h2, ..., h10) the observed and realized latent sequences respectively. Suppose, for
that the observed sequence, xt ∈ X = {1, 2, ..., nX}, and suppose that for the latent sequence
ht ∈ H = {0, 1, 2, ..., nH} is the set of available region types.

For k ∈ H, let

Pk =




p
(k)
11 p

(k)
12 · · · p

(k)
1nX

p
(k)
21 p

(k)
22 · · · p

(k)
2nX

...
...

. . .
...

p
(k)
nX1

p
(k)
nX2

· · · p
(k)
nXnX
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be the nX × nX Markov transition matrix for region type k, and let

Pθ =




θ00 θ00 · · · θ0nH

θ10 θ11 · · · θ1nH

...
...

. . .
...

θnH0 θnH1 · · · θnHnH




be the (nH + 1)× (nH + 1) Markov transition matrix between regions. Recall that, in each case,
the rows of these matrices are conditional probability distributions and therefore must sum to one.
Typically, we will be considering nX = 4 (for DNA sequences) and nX = 20 for protein sequences,
and nH up to 5.

Given the latent sequence h and using the notation P = (P0, P1, ..., PnH , Pθ), the likelihood
function derived from the observed data x,can be defined in the spirit of earlier sections, and using
the chain-rule for probabilities as

L (h1, h2, ..., hn,P) = f(x1, x2, ..., xn;h1, h2, ..., hn,P)

= f(x1;h1,P)
×f(x2;x1, h1, h2,P)
×f(x3;x1, x2, h1, h2,P)
× . . .

×f(xn;x1, x2, ..., xn−1, h1, h2, ..., hn,P)

(4.12)

Now, because of the Markov assumption for the observed data, the conditional probability expres-
sions can be simplified. Specifically, for t = 2, 3, ..., n

f(xt;x1, x2, ..., xt−1, h1, h2, ..., ht,P) = f(xt; xt−1, ht−1, ht,P)

as the observation in position t conditional on previous values is dependent only on the observation
in position t − 1. Furthermore, if ht = ht−1 = k say (that is, there is no change in region type
between position t− 1 and position t), then

f(xt; xt−1, ht−1, ht,P) = f(xt;xt−1, ht−1, ht, Pk)

where

f(xt;xt−1, ht−1, ht, Pk) = p
(k)
ij ifxt−1 = i andxt = j

is the probability of a transition between states i and j within region type k between positions t−1
and t. If ht = ht−1, say ht−1 = k1 and ht = k2 with k1 = k2 then it is assumed that

f(xt;xt−1, ht−1, ht,P) = f(xt;ht, Pk2)

where

f(xt;ht, Pk2) = p
(k2)
j ifxt = j
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and p
(k2)
j is the stationary or equilibrium probability of state j in region type k2 (see section

4.2.3). Note that, for any k, the equilibrium distribution

p(k) =
(
p
(k)
1 , p

(k)
2 , ..., p(k)nX

)

is defined entirely by the transition matrix Pk.

Example 4.7.1 In the examples above, we have

Observed sequence A C T C G A A C C G
Coded 1 2 4 2 3 1 1 2 2 3
Latent sequence 0 0 0 0 0 0 1 1 1 1

and thus nX = 4, nH = 1. The likelihood is thus

L (h1, h2, ..., hn,P) = f(x1, x2, ..., x10;h1, h2, ..., h10,P)

= f(x1;h1,P)× f(x2;x1, h1, h2,P)× f(x3;x2, h2, h3,P)× . . .× f(x10;x9, h9, h10,P)

= f(1; 0,P)× f(2; 1, 0, 0,P)× f(4; 2, 0, 0,P)× . . .× f(3; 2, h9, h10,P)

= p
(0)
1︸︷︷︸
Pos1

× p
(0)
12︸︷︷︸
Pos2

× p
(0)
24︸︷︷︸
Pos3

× p
(0)
42︸︷︷︸
Pos4

× p
(0)
23︸︷︷︸
Pos5

× p
(0)
31︸︷︷︸
Pos6︸ ︷︷ ︸

Regiontype0

× p
(1)
1︸︷︷︸
Pos7

× p
(1)
12︸︷︷︸
Pos8

× p
(1)
22︸︷︷︸
Pos9

× p
(1)
23︸︷︷︸

Pos10︸ ︷︷ ︸
Regiontype1

Previously, such a likelihood has formed the basis for statistical inference. Using maximum
likelihood estimationwe could estimate the unobserved parameters (h1, h2, ..., hn,P) by choosing
those values at which L (h1, h2, ..., hn,P) is maximized, that is, we choose

(
ĥ1, ĥ2, ..., ĥn, P̂

)
= argmaxL (h1, h2, ..., hn,P)

where, recall,

L (h1, h2, ..., hn,P) = f (x|h,P)

The inference problem now is twofold. We wish to

(a) report the most probable states h = (h1, h2, ..., hn) in light of the data x

(b) estimate the parameters in P = (P0, P1, ..., PnH , Pθ)

The estimation of the most probable states is complicated by the structure in this latent sequence.
Remember that the Markov assumption means that the joint distribution of random variables
H = (H1,H2, ...,Hn) should be written (using the chain rule) as

f(h1, h2, h3, ..., hn) = f (h1)× f (h2|h1)× f (h3|h1, h2)× ...× f (hn|h1, h2, h3, ..., hn−1)

= f (h1)× f (h2|h1)× f (h3|h2)× ...× f (hn|hn−1)
(4.13)
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and this dependence structure should be taken into account. Recall also that the joint distribution
of vectorH depends on transitionmatrix Pθ, terms in (4.13) will be either transition probabilities
θij or equilibrium probabilities θi derived from Pθ.

For HMMs, likelihood based inference is carried out via Bayes Rule that allows the posterior
probability of the states in the latent sequence to be computed. The key quantity is the joint
conditional probability of the hidden states, given the observed sequence, that is p (h|x) where

f (h|x) = f(x|h)f(h)
f(x)

(4.14)

suppressing the dependence on the other parameters, where the first term in the numerator comes
from (4.12) and the second term comes from (4.13) The denominator is the joint (unconditional)
probability of observing the data sequence x that can be computed via the Total Probability
result as

f(x) =
∑

h

f(x|h)f(h) (4.15)

where the summation is over all possible state vector configurations. Inference will require efficient
computational methods as the summation in (4.15) and the maximizations that are required both
involve large numbers of terms

4.7.2 COMPUTATIONAL METHODS FOR HMMS

The computational aspect of likelihood based inference can be broken down into three sub-problems.

(i) Compute the conditional likelihood in (4.15) given transition probabilities P

f(x|P) =
∑

h

f(x|h,P)f(h|P)

(ii) Find the state vector that maximizes the joint conditional probability in (4.14), that is,

ĥ = argmax f (h|x)

(iii) Find the maximum likelihood estimates of the parameters in P.

The doubly-Markov model described above, that is, with a Markov structure in the observed
data and a Markov structure in the unobserved states is a model that requires much computational
effort. Typically, a simplification is made, in that the matrices P0, P1, ..., PnH are assumed to be
diagonal, that is, we may write for k = 0, 1, ..., nH ,

Pk =




p
(k)
1 0 · · · 0

0 p
(k)
2 · · · 0

...
...

. . .
...

0 0 · · · p
(k)
nX
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so that the observed data are conditionally independent given the unobserved states, so that
there is no dependence between characters in adjacent positions in the sequence. In this case the
likelihood is formed (in the example) as

L (h1, h2, ..., hn,P) = f(x1, x2, ..., x10;h1, h2, ..., h10,P)

= f(x1;h1,P)× f(x2;h2,P)× f(x3;h3,P)× . . .× f(x10;h10,P)

= p
(0)
1︸︷︷︸
Pos1

× p
(0)
2︸︷︷︸
Pos2

× p
(0)
4︸︷︷︸
Pos3

× p
(0)
2︸︷︷︸
Pos4

× p
(0)
3︸︷︷︸
Pos5

× p
(0)
1︸︷︷︸
Pos6︸ ︷︷ ︸

Regiontype0

× p
(1)
1︸︷︷︸
Pos7

× p
(1)
2︸︷︷︸
Pos8

× p
(1)
2︸︷︷︸
Pos9

× p
(1)
2︸︷︷︸

Pos10︸ ︷︷ ︸
Regiontype1

Even if this assumption is made, the computational task is still considerable. For example,
for task (i), it is possible merely to list all possible state vector configurations that appear as the
summand in (4.15), and to sum out over them. However, this is a calculation requiring a large
number of computations; for a sequence of length n, the direct calculation requires

2n× (nH + 1)n

and for a sequence of length 10 with nH = 1 as in example 1, this number is 20 × 210 = 20480,
but this number increases quickly as the sequence length/number of region type increases. For
example:

nH
1 2 3 4

10 2.048× 104 1.181× 106 2.097× 107 1.953× 108

n 100 2.535× 1032 2.103× 1050 3.321× 1062 4.158× 1072

500 3.273× 10153 3.636× 10241 1.072× 10304 3.055× 10352

so even for moderate-sized problems the number of computations is large. Thus, instead of direct
calculation, the Forward and Backward algorithms are used. See section B for full details

For the next stage of the inferential process, it is required to compute the most likely sequence
of unobserved states, given the observed data, that is

ĥ = argmax f (h|x) = argmax
f(x|h)f(h)

f(x)
= argmax f(x|h)f(h) = argmaxf(x, h)

This is achieved via the Viterbi Algorithm The final stage involves parameter estimation,
and the Baum-Welch Algorithm.; see section B for full details.
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4.8 FUNCTIONAL BIOINFORMATICS: GENE EXPRESSION
ANALYSIS VIA MICROARRAYS

A common biological problem is to detect differential expression of a gene in two or more tissue
or cell types, as any differences may contribute to the understanding of the cellular organization
(pathways, regulatory networks), or may provide a mechanism for discrimination between future
unlabelled samples. Microarray experiments have made the study of gene expression routine;
instantaneous measurements of mRNA levels for large numbers of different genes can be obtained
for different tissue or cell types in a matter of hours. The most important aspects of a statistical
analysis of gene expression data are, therefore twofold; the analysis should be readily implementable
for large data sets (large numbers of genes, and/or large numbers of samples), and should give
representative, robust and reliable results over a wide range of experiments.

4.8.1 MICROARRAY DATA: THE TWO TYPES OF ARRAY

• cDNA microarrays: In cDNA microarray competitive hybridization experiments, the
mRNA levels of a genes in a target sample are compared to the mRNA level of a control sample
by attaching fluorescent tags (usually red and green respectively for the two samples) and
measuring the relative fluorescence in the two channels. Thus, in a test sample (containing
equal amounts of target and control material), differential expression relative to the control
is either in terms of up-regulation or down-regulation of the genes in the target sample. Any
genes that are up-regulated in the target compared to the control and hence that have larger
amounts of the relevant mRNA, will fluoresce as predominantly red, and any that are down-
regulated will fluoresce green. Absence of differences in regulation will give equal amounts
of red and green, giving a yellow fluor. Relative expression is measured on the log scale

y = log
xTARGET
xCONTROL

= log
xR
xG

(4.16)

where xR and xG are the fluorescence levels in the RED and GREEN channels respectively.

• Oligonucleotide arrays: The basic concept oligonucleotide arrays is that the array is pro-
duced to interrogate specific target mRNAs or genes.by means of a number of oligo probes
usually of length no longer than 25 bases; typically 10-15 probes are used to hybridize to a
specific mRNA, with each oligo probe designed to target a specific segment of the mRNA
sequence. Hybridization occurs between oligos and test DNA in the usual way. The novel
aspect of the oligonucleotide array is the means by which the absolute level of the target
mRNA is determined; each perfect match (PM) probe is paired with a mismatch (MM) probe
that is identical to the prefect match probe except for the nucleotide in the centre of the
probe, for which a mismatch nucleotide is substituted, as indicated in the diagram below.

PM : ATGTATACTATT A TGCCTAGAGTAC

MM : ATGTATACTATT C TGCCTAGAGTAC

The logic is that the target mRNA, which has been fluorescently tagged, will bind perfectly
to the PM oligo, and not bind at all to the MM oligo, and hence the absolute amount of the
target mRNA present can be obtained as the difference

xPM − xMM

where xPM and xMM are the fluorescence measurements of for the PM and MM oligos
respectively.
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In a microarray experiment, therefore, we typically have access to expression/expression profile
data, possibly for a number of replicate experiments, for each of a (usually large) number of genes
or expressed sequence tags (ESTs) or probes. We will denote by

yijk i = 1, ...,N, j = 1, ....ni, k = 1, ..., T

the expression data for each of N genes, with ni replicate observations of a time series of length
T for gene i. The hybridization experiments are carried out under strict protocols, and every
effort is made to regularize the production procedures, from the preparation stage through to
imaging. Typically, replicate experiments are carried out; the same array gene/oligo set are used
to investigate the portions of the same test sample.

4.8.2 STATISTICAL ANALYSIS OF MICROARRAY DATA

Conventional statistical analysis techniques and principles (hypothesis testing, significance testing,
estimation, simulation methods/Monte Carlo procedures) can be used in the analysis of microarray
data. The principal biological objectives of a typical microarray analysis are:

1. Detection of differential expression: up- or down-regulation of genes in particular ex-
perimental contexts, or in particular tissue samples, or cell lines at a given time instant.

2. Understanding of temporal aspects of gene regulation: the representation and mod-
elling of patterns of changes in gene regulation over time.

3. Discovery of gene clusters: the partitioning of large sets of genes into smaller sets that
have common patterns of regulation.

4. Inference for gene networks/biological pathways: the analysis of co-regulation of genes,
and inference about the biological processes involving many genes concurrently.

There are typically several key issues and models that arise in the analysis of microarray data; we
have previously studied these techniques in a general statistical context.

• array normalization: arrays are often imaged under slightly different experimental condi-
tions, and therefore the data are often very different even from replicate to replicate. This
is a systematic experimental effect, and therefore needs to be adjusted for in the analysis of
differential expression. A misdiagnosis of differential expression may be made purely due to
this systematic experimental effect.

• measurement error: the reported (relative) gene expression levels models are only in fact
proxies for the true level gene expression in the sample. This requires a further level of
variability to be incorporated into the model.

• modelling: the sources of variability present in the data can be explained using conventional
statistical tools of linear and non-linear models. In addition, it may be necessary also to used
mixed regression models, where gene specific random-effects terms are incorporated into the
model. For example, a common linear mixed model for non time-course data is as follows:
for gene i under condition j, in replicate (array) l, we have that

y
(l)
ij = α(l) + γijZij + ε

(l)
ij
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where α(l) is an array effect, γ
(l)
ij is a gene specific (random) effect for gene i under condition j,

Zij is an indicator variable determining whether the ith gene is in fact differentially expressed

under the jth condition, and ε
(l)
ij is an uncorrelated random effect.

• multivariate analysis: the covariability of response measurements, in time course experi-
ments, or between PM and MM measurements for an oligonucleotide array experiment, is
best handled using multivariate modelling.

• testing: one- and two-sample hypothesis testing techniques, based on parametric and non-
parametric testing procedures can be used in the assessment of the presence of differential
expression. For detecting more complex (patterns of) differential expression, in more general
structured models, the tools of analysis of variance (ANOVA) can be used to identify the
chief sources of variability.

• multiple testing/False discovery: in microarray analysis, a classical statistical analysis
using significance testing needs to take into account the fact that a very largs number of tests
are carried out. Hence significance levels of tests must be chosen to maintain a required
family-wise error rate, and to control the false discovery rate.

• classification: the genetic information contained in a gene expression profile derived from
microarray experiments for, say, an individual tissue or tumour type may be sufficient to
enable the construction of a classification rule that will enable subsequent classification of
new tissue or tumour samples.

• cluster analysis: the discovery of subsets of larger sets of genes that have common patterns
of regulation.can be achieved using the statistical techniques of cluster analysis (see section
4.9).

• computer-intensive inference: for many testing and estimation procedures needed for
microarray data analysis, simulation-based methods (bootstrap estimation, Monte Carlo and
permutation tests, Monte Carlo and Markov chain Monte Carlo) are often necessary to enable
the appropriate calibration of the inferences being made. This is especially true when complex
and hierarchical or multi-level models are used to represent the different sources of variability
in the data.

• data compression/feature extraction: the methods of principal components analysis
and extended linear modelling via basis functions can be used to extract the most pertinent
features of the large microarray data sets.

• experimental design: statistical experimental design can assist in determining the number
of replicates, the number of samples, the choice of time points at which the array data are
collected and many other aspects of microarray experiments. In addition, power and sample
size assessments can inform the experimenter as to the statistical worth of the microarray
experiments that have been carried out.

Typically, data derived from both types of microarray highly noise and artefact corrupted. The
statistical analysis of such data is therefore quite a challenging process. In many cases, the replicate
experiments are very variable. The other main difficulty that arises in the statistical analysis of
microarray data is the dimensionality; a vast number of gene expression measurements are available,
usually only on a relatively small number of individual observations or samples, and thus it is hard
to establish any general distributional models for the expression of a single gene.
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4.9 CLUSTER ANALYSIS OF MICROARRAY DATA

4.9.1 CLUSTER ANALYSIS

Cluster analysis is the searching for groups (clusters) in the data, in such a way that objects
belonging to the same cluster resemble each other, whereas objects in different clusters are dissim-
ilar. In two or three dimensions, clusters can be visualized. With more than three dimensions, or
in the case of dissimilarity data (see below), we need some kind of analytical assistance. Generally
speaking, clustering algorithms fall into two categories:

1. Partitioning Algorithms: A partitioning algorithm describes a method that divides the
data set into k clusters, where the integer k needs to specified. Typically, you run the
algorithm for a range of k-values. For each k, the algorithm carries out the clustering and
also yields a quality index which allows you to select the ìbest̂i value of k afterwards.

2. Hierarchical Algorithms:. A hierarchical algorithm yields an entire hierarchy of clusterings
for the given data set. Agglomerative methods start with the situation where each object in
the data set forms its own cluster, and then successively merges clusters until only one large
cluster (the entire data set) remains. Divisive methods start by considering the whole data
set as one cluster, and then splits up clusters until each object is separated.

Data sets for clustering of N observations can have either of the following structures:

• an N × p data matrix, where rows contain the different observations, and columns contain
the different variables.

• an N ×N dissimilarity matrix, whose (i, j)th element is dij , the distance or dissimilarity
between observations i and j that has the properties

— dii = 0

— dij ≥ 0

— dji = dij

• Typical data distance measures between two data points i and j with measurement vectors
xi and xj include

— the Euclidean distance for continuous measurements

dij =

√√√√
p∑

k=1

(xik − xjk)
2 =

√
(xi − xj)T (xi − xj)

— the Manhattan distance for continuous or discrete measurements

dij =

p∑

k=1

|xik − xjk| =
p∑

k=1

√
(xik − xjk)

2

For ordinal (categorical) or nominal (label) data, other dissimilarities can be defined.
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4.9.2 PARTITIONING METHODS

Partitioning methods are based on specifying an initial number of groups, and iteratively reallocat-
ing observations between groups until some equilibrium is attained. Several different algorithms
are available

1. The k-Means algorithm: In the k-means algorithm the observations are classified as be-
longing to one of k groups. Group membership is determined by calculating the centroid for
each group (the multidimensional version of the mean) and assigning each observation to the
group with the closest centroid. The k-means algorithm alternates between calculating the
centroids based on the current group memberships, and reassigning observations to groups
based on the new centroids. Centroids are calculated using least-squares, and observations
are assigned to the closest centroid based on least-squares. This assignment is performed
in an iterative fashion, either from a starting allocation or configuration, or from a set of
starting centroids.

2. Partitioning around medoids (PAM): The PAM method uses medoids rather than
centroids (that is, medians rather than means in each dimension. This approach increases
robustness relative to the least squares approach given above.

4.9.3 HIERARCHICAL CLUSTERING

Hierarchical Clustering procedures can be carried out in two ways

• Heuristic Criteria The basic hierarchical agglomeration algorithm starts with each object
in a group of its own. At each iteration it merges two groups to form a new group; the merger
chosen is the one that leads to the smallest increase in the sum of within-group sums of
squares. The number of iterations is equal to the number of objects minus one, and at the
end all the objects are together in a single group. This is known asWard’s method, the sum of
squares method, or the trace method. The hierarchical agglomeration algorithm can be used
with criteria other than the sum of squares criterion, such as the average, single or complete
linkage methods described below.

• Model-Based Criteria Model-based clustering is based on the assumption that the data
are generated by a mixture of underlying probability distributions. Specifically, it is assumed
that the population of interest consists of kdifferent subpopulations, and that the density of
an observation from the th subpopulation is for some unknown vector of parameters.

Hence, hierarchical clustering is a method of organizing a set of objects into sets of using a similar-
ity/discrepancy measure or by some overall potential function. Agglomerative clustering initially
places each of the N items in its own cluster. At the first level, two objects are to be clustered
together, and the pair is selected such that the potential function increases by the largest amount,
leaving N − 1 clusters, one with two members, the remaining N − 2 each with one. At the next
level, the optimal configuration of N − 2 clusters is found, by joining two of the existing clusters.
This process continuous until a single cluster remains containing all N items.

In conventional hierarchical clustering, the method of agglomeration or combining clusters is
determined by the distance between the clusters themselves, and there are several available choices.
For merging two clusters Ci and Cj , with N1 and N2 elements respectively, the following criteria
can be used
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• In average (or average linkage) clustering, the two clusters that have the smallest average
distance between the points in one cluster and the points in the other

d (Ci, Cj) =
1

N1N2

∑

k∈Ci,l∈C2

dkl

are merged

• In connected (single linkage, nearest-neighbour) clustering, the two clusters that have the
smallest distance between a point in the first cluster and a point in the second cluster

d (Ci, Cj) = min
k∈Ci,l∈C2

dkl

are merged.

• In compact (complete linkage, furthest-neighbour) clustering, the two clusters that have the
largest distance between a point in the first cluster and a point in the second cluster

d (Ci, Cj) = max
k∈Ci,l∈C2

dkl

are merged.

4.9.4 MODEL-BASED HIERARCHICAL CLUSTERING

Another approach to hierarchical clustering is model-based clustering, which is based on the
assumption that the data are generated by a mixture of K underlying probability distributions.
Given data matrix X = (x1, ...,xN)

T , let

γ =(γ1, ..., γN)

denote the cluster labels, where

γi = k

if the ith data point comes from the kth subpopulation. In the classification procedure, the maxi-
mum likelihood procedure (section 3.3.1) is used to choose the parameters in the model.

Commonly, the assumption is made that the data in the different subpopulations follow multi-
variate normal distributions, with mean µk and covariance matrix Σk for cluster k If

Σk = σ2Ip Ip = diag (1, ..., 1) , ap× p matrix.

then maximizing the likelihood is the same as minimizing the sum of within-group sums of squares
that underlies Ward’s method. Thus, Ward’s method corresponds to the situation where clusters
are hyperspherical with the same variance. If clusters are not of this kind, (for example, if they
are thin and elongated), Ward’s method tends to break them up into hyperspherical blobs.

Other forms of Σk yield clustering methods that are appropriate in different situations. The
key to specifying this is the eigen decomposition of Σk, given by eigenvalues λ1, ..., λp and eigen-
vectors v1, ...,vp, as in Principal Components Analysis (section 3.14.1, equation (3.7)) The
eigenvectors of Σk, specify the orientation of the kth cluster, the largest eigenvalue λ1 specifies
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its variance or size, and the ratios of the other eigenvalues to the largest one specify its shape.
Further, if

Σk = σ2kIp

the criterion corresponds to hyperspherical clusters of different sizes; this is known as the Spherical
criterion.

Another criterion results from constraining only the shape to be the same across clusters.. This
is achieved by fixing the eigenvalue ratios

αj =
λj
λ1

j = 2, 3, ..., p

across clusters; common choices for the specification are

• αj = 0.2 giving ellipsoidal clusters

• αj = 0.01 gives almost linear, concentrated clusters

• αj = 1 giving the spherical model

4.9.5 MODEL-BASED ANALYSIS OF GENE EXPRESSION PROFILES

The clustering problem for vector-valued observations can be formulated using models used to
represent the gene expression patterns via the extended linear model (section 3.12.2), that is, linear
models and non-linear basis functions. Generically we wish to capture the behaviour of the gene
expression ratio y as a function of time t and measurement error. The basis of our modelling
strategy would be to use models that capture the characteristic behaviour of expression profiles
that we can expect to observe due to different forms of regulation. A regression framework and
model is often adopted

yt = f(β, t) + εt.

More specifically, we model y using a linear model

yt = Xtβ + εt

where Xt is (in general) a 1×p vector of specified functions of t, and β is a p×1 parameter vector.
In vector representation, where y = (y1, ..., yT ), we have

y = Xβ + ε (4.17)

and a classical linear model. The precise form of design matrix X is at the moment left unspec-
ified. Typically we take the random error terms {εt} as independent and identically distributed
Normal variables with variance σ2, implying that the conditional distribution of the responses Y is
multivariate normal

Y |X,β, σ2 ∼ N
(
Xβ,σ2IT

)
(4.18)

where now X is T × p where IT is the T × T identity matrix. For this model, the maximum
likelihood/ordinary least squares estimates of β and σ2 are

β̂ML =
(
XTX

)−1
XT y σ̂2 =

1

T − p
(y − ŷ)T (y − ŷ)

for fitted values ŷ = Xβ̂ML = X
(
XTX

)−1
XT y. as seen in



134 CHAPTER 4. STATISTICAL MODELS AND METHODS IN BIOINFORMATICS

4.9.6 BAYESIAN ANALYSIS IN MODEL-BASED CLUSTERING

In a Bayesian analysis of the model in (4.17) a joint prior distribution p
(
β, σ2

)
is specified

for
(
β, σ2

)
, and a posterior distribution conditional on the observed data is computed for the

parameters. The calculation proceeds using Bayes Rule (section 1.6), and is given by

p
(
β, σ2|y, x

)
=

L
(
y;x, β, σ2

)
p

(
β, σ2

)
∫

L (y;x, β, σ2) p (β, σ2) dβ dσ2

where L
(
y;x, β, σ2

)
is the likelihood function from section 3.3.1. In the linear model context,

typically, a so-called conjugate prior specification is used where

p
(
β|σ2

)
≡ N

(
v, σ2V

)
p

(
σ2

)
≡ InverseGamma

(α
2
,
γ

2

)
(4.19)

(v is p× 1, V is p× p positive definite and symmetric, all other parameters are scalars) and using
this prior standard Bayesian calculations show that conditional on the data

p
(
β|y, σ2

)
≡ N

(
v∗, σ2V ∗

)
p
(
σ2|y

)
≡ InverseGamma

(
T + α

2
,
c+ γ

2

)
(4.20)

where

V ∗ =
(
XTX + V −1

)−1
v∗ =

(
XTX + V −1

)−1 (
XT y + V −1v

)

c = yT y + vTV −1v −
(
XT y + V −1v

)T (
XTX + V −1

)−1 (
XT y + V −1v

)
(4.21)

In regression modelling, it is usual to consider a centred parameterization for β so that v = 0,
giving

v∗ =
(
XTX + V −1

)−1
XT y

c = yT y − yTXT
(
XX + V −1

)−1
XT y = yT

(
IT −X

(
XTX + V −1

)−1
XT

)
y

IThe critical quantity in a Bayesian clustering procedure is the marginal likelihood or prior
predictive distribution for the data in light of the model.

p(y) =

∫
p

(
y|β, σ2

)
p
(
β|σ2

)
p
(
σ2

)
dβdσ2. (4.22)

Combining (3.3.1) and (4.19) gives that

p(y) =

(
1

π

)T/2 γα/2Γ
(
T + α

2

)

Γ
(α
2

) |V ∗|1/2

|V |1/2
1

{c+ γ}(T+α)/2
(4.23)

For a collection of data sequences y1, ..., yN (4.23) can be evaluated and used as the basis of

a dissimilarity measure as an input into a hierarchical clustering procedure. The marginal
likelihood in (4.23) can easily be re-expressed for clustered data.
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4.9.7 CHOOSING THE NUMBER OF CLUSTERS

A hierarchical clustering procedure gives the sequence by which the clusters are merged (in agglom-
erative clustering) or split (in divisive clustering) according the model or distance measure used,
but does not give an indication for the number of clusters that are present in the data (under the
model specification). This is obviously an important consideration.

One advantage of the model-based approach to clustering is that it allows the use of statistical
model assessment procedures to assist in the choice of the number of clusters. A common method is
to use approximate Bayes factors to compare models of different orders (i.e. models with different
numbers of clusters). This method gives a systematic means of selecting the parameterization of the
model, the clustering method, and also the number of clusters. The Bayes factor is the posterior
odds for one model against the other assuming neither is favored a priori. Two methods based on
the Bayes factor have been used.

• The Approximate Weight of Evidence (AWE) This is a heuristically derived approxi-
mation to twice the log Bayes factor

• The Bayesian Information Criterion (BIC) A more reliable approximation to twice the
log Bayes factor called the Bayesian Information Criterion, which, for model M is given by

BICM = 2 logLM + const ≈ 2 logLM

(
θ̂
)
− dM logN

where LM is the Bayesian marginal likelihood from (4.22), LM

(
θ̂
)

is the maximized log

likelihood of the data for the model M , and dM is the number of parameters estimated in the
model. The number of clusters is not considered a parameter for the purposes of computing
the BIC. The larger the value of the BIC, the stronger the evidence for the model.

4.9.8 DISPLAYING THE RESULTS OF A CLUSTERING PROCEDURE

The principal display plot for a clustering analysis is the dendrogram,which plots all of the individual
data linked by means of a binary “tree”. Such a plot is displayed below. The data comprise a set of
gene expression profiles, with expression in challenged cells being measured relative to unchallenged
cells, over a time course of five measurements made over a number of hours. The total number of
genes in this experiment is 10585. Two dendrograms for different clustering procedures (average
and compact linkage) are displayed for a subset of 500 randomly selected genes
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Figure 4.2: Average Linkage



136 CHAPTER 4. STATISTICAL MODELS AND METHODS IN BIOINFORMATICS

1
2

3 456 78 9
1011 1213

14

15 1617

18

19

20

21

22
2324 2526

27

282930 313233

34 35

36 3738 39

40

41 4243 44 45 464748 49 50 5152

5354

55

5657 58 5960

61

62

63

64

6566

6768

69 70717273 74 757677 78 79

80
81 8

283

8485 868788 89 90 9192 93 9495 96 979899

10
0

10
1

10
2

10
310

4

10
5

10
6

10
7

10
8

10
9

11
011

1

11
2

11
3

11
4

11
511

6

11
7

11
8

11
9

12
0

12
1

12
2

12
3

12
4

12
5

12
6

12
7

12
8

12
9

13
0

13
1 13

2

13
3

13
4

13
5

13
6

13
7 13

8

13
9

14
0

14
1

14
2

14
3

14
4

14
5 14

6

14
7

14
8 14

9

15
0

15
115

2

15
3

15
4

15
5

15
6

15
7 15

8

15
9

16
0 16

1

16
2

16
3

16
416

5 16
6

16
7

16
816

9

17
0

17
1

17
2

17
3

17
4

17
5

17
617

7

17
817

9

18
0

18
1

18
2 18

3

18
4

18
5

18
6

18
7

18
8 18

9

19
0

19
1

19
2

19
3

19
4

19
5

19
6 19

7

19
8 19

9

20
0 20

1

20
2

20
3

20
4

20
5

20
6 20

7

20
8

20
9

21
0

21
1

21
2

21
3 21

421
5

21
6

21
7

21
8

21
9

22
022

1 22
2

22
3

22
4

22
522

6

22
7

22
8

22
9

23
0

23
1

23
2

23
3

23
4

23
5

23
6

23
7

23
8

23
9

24
0

24
124

2

24
3 24

4
24

5

24
6

24
7

24
8 24

9

25
0

25
1 25

2

25
3

25
4 25

525
6

25
7

25
8

25
9

26
0

26
1

26
2

26
3

26
4

26
5

26
6

26
7

26
8

26
9

27
0

27
1 27

2

27
3

27
4

27
5

27
6

27
7

27
8

27
928

0

28
1

28
2

28
3

28
4

28
5

28
6

28
7

28
8

28
9

29
0

29
1

29
2

29
3 29

4

29
5 29

6

29
7

29
8

29
9

30
030

1

30
2

30
3

30
4

30
5

30
6

30
7

30
8

30
9

31
0

31
1

31
2

31
331

4

31
5

31
6

31
7

31
8 31

9

32
0

32
1

32
2

32
3

32
4

32
5

32
6

32
732

8

32
9

33
0

33
1

33
2

33
3

33
4 33

5

33
6

33
733

8

33
9

34
0

34
1

34
2

34
3 34

4

34
534

6

34
734

8

34
9

35
0

35
1

35
2

35
335

4

35
5

35
6 35

7

35
8 35

9

36
0

36
1

36
2

36
3 36

4

36
5

36
6

36
7

36
8

36
9

37
0

37
1

37
2

37
3

37
4

37
5 37

6

37
7

37
8

37
9

38
0

38
1

38
2

38
3

38
4

38
5

38
6

38
7

38
8 38

9

39
0

39
1

39
2

39
3

39
4

39
5

39
6

39
7

39
839

9

40
0

40
1

40
2

40
3

40
4

40
5

40
6 40

7

40
8

40
9

41
0

41
1

41
2

41
3

41
441

5

41
6

41
741

8

41
9

42
0

42
1

42
242

3

42
4

42
542

6

42
7

42
8

Figure 4.3 Compact linkage

The distance up the tree, or “height” can be used in determining the number of clusters that are
present in the data. Another useful plot is the BIC plot for the hierarchical clustering, as this
gives an indication of how many clusters are present in the data. Figure 4.4 gives a typical BIC
plot for successive numbers of clusters between 0 and 200.

4.9.9 CLASSIFICATION VIA MODEL-BASED CLUSTERING

Any clustering procedure can be used as the first step in the construction of classification rules.
Suppose that it, on the basis of an appropriate decision procedure,. it is known that there are C
clusters, and that a set of existing expression profiles y1, ..., yN have been allocated in turn to the
clusters. Let z1, ..., zN be the cluster allocation labels for the profiles. Now, suppose further that
the C clusters can be decomposed further into two subsets of sizes C0 and C1, where the subsets
represent perhaps clusters having some common, known biological function or genomic origin. For
example, in a cDNA microarray, it might be known that the clones are distinguishable in terms of
the organism from which they were derived. A new objective could be to allocate a novel gene
and expression profile to one of the subsets, and one of the clusters within that subset. ,

Let yijk denote, for i = 0, 1, j = 1, 2, ...,Ci, k = 1, 2, ...,Nij denote the kth profile in cluster j in
subset i. Let y∗ denote a new profile to be classified, and ξ∗ be the binary classification-to-subset,
and z∗ the classification-to-cluster variable for y∗. Then, by Bayes Rule, for i = 1, 2,

P [ξ∗ = i|y∗, y, z] ∝ p (y∗|ξ∗ = i, y, z)P [ξ∗ = i|y, z] (4.24)

The two terms in (4.24) are to be determined on the basis of the clustering output.



CHAPTER A

STOCHASTIC PROCESSES AND RANDOM WALKS

A.1 PROPERTIES OF SIMPLE RANDOM WALKS

The simple random walk with absorbing states gives some insight into how the BLAST cu-
mulative score random walk behaves. We consider the behaviour in detail here Consider the
homogeneous random walk Yn say that moves in steps of +1 with probability p and −1 with prob-
ability q = 1− p, but that is absorbed at when it enters states a or b (a < b); suppose that p = q.
For any value h with a ≤ h ≤ b, let

wh = P [Random walk is eventually absorbed at b after starting at h]

uh = P [Random walk is eventually absorbed at a after starting at h] = 1− wh

so that wa = ub = 0, wb = ua = 1. It can be shown that

wh =
eθh − eθa

eθb − eθa
& uh =

eθb − eθh

eθb − eθa
where θ = log

(
q

p

)
. (A.1)

The number of steps taken until the random walk is absorbed at either a or b (the absorption
time) is also of interest. This absorption time is a discrete random variable whose probability
distribution depends on the starting position h, and also on a, b, p and q. Denoting by Nh the
absorption time random variable, we would ideally like to derive the probability distribution of
Nh, but unfortunately this is not straightforward. Instead, we compute the expected value of Nh,
which is more readily available. It can be shown that

mh = EfNh [Nh] =
wh (b− h) + uh (a− h)

p− q
(A.2)

We can now consider limiting cases of wh, uh and mh of particular relevance to biological sequence
analysis and the BLAST stochastic process model described in the previous section; the case where
the lower absorbing state a is −1 and the upper absorbing state b is some threshold value y ≥ 1.
In this case, for h = 0, we have from (A.1)

w0 =
1− e−θ

eθy − e−θ

which is the probability that the random walk reaches and is absorbed at y prior to being absorbed
at −1. It can be shown that this probability is approximately equal to

(
1− e−θ

)
e−θy. But this

is the probability that the random walk is absorbed at threshold y; hence if Y is the maximum
state reached by the same random walk without the upper absorbing state, then we must have
that

P [Y ≥ y] ≈
(
1− e−θ

)
e−θy = Ce−θy (A.3)
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say, where C =
(
1− e−θ

)
. Also, from (A.2), we have (as b→∞ so that by definition w0 → 0 and

u0 → 1) that

m0 = EfN0 [N0] =
bw0 − u0
p− q

→ 1

q − p
= A, say. (A.4)

The case a = −1 is relevant to previous discussions of the BLAST stochastic process {Sn} if
we consider the subsections determined by the ladder points; a random walk starting at the most
recent ladder point carries out an excursion that comes to a halt when the next ladder point is
reached. Thus, if the most recent ladder point is at position i and has cumulative score si, then
the new random walk {S′n} defined by

S′n−i = Sn − si n ≥ i

starts at h = 0 and is comes to a halt/is absorbed at a = −1 when the next ladder point is reached.

A.2 SIMPLE RANDOM WALK GENERALIZATIONS

For a more general analytic perspective, consider a homogeneous Markov chain with a range of
step sizes and with different associated probabilities

STEP SIZE −c −c+ 1 · · · 0 · · · d− 1 d+ 1
PROBABILITY p−c p−c+1 · · · p0 · · · pd−1 pd

with the assumptions

(i) p−c, pd > 0

(ii) The expected step size mSTEP is negative, that is

mSTEP =
d∑

j=−c

jpj < 0

(iii) The step sizes that have non-zero probability also have no common divisor other than 1.

- such a chain forms the basis for PSIBLAST analysis of protein sequences.

Again, assuming that such a random walk starts at h = 0, and is absorbed at state a = −1 or
reaches threshold b = y ≥ 1, it is straightforward to see that the random walk will come to a halt
at one of the states −c,−c+ 1, ...,−1, y, y + 1, ...., y + d− 1, and if

Pk = P [Random walk halts in state k]

then it can be shown that

−1∑

k=−c

Pke
kθ +

y+d−1∑

k=y

Pke
kθ = 1
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for some unique positive quantity θ that satisfies

d∑

j=−c

pje
jθ = 1 (A.5)

Equation (A.5) can be used to compute θ for a given set of pj . Clearly, Pk for k = −c,−c +
1, ...,−1, y, y + 1, ...., y + d − 1 depends on the threshold value y, but the limiting probability
Rj = lim

y→∞
Pj can be defined and computed, and used to derive the limiting expected absorption

time

A = − 1

mSTEP

c∑

j=1

jR−j (A.6)

This general Markov random walk has properties that are essentially the same as for the simple
randomwalk described above. For example, it can be shown that if Y is the value at themaximum
state reached by the walk then analogously to (A.4) above, by considering an absorbing state at
threshold y and the probability of being absorbed at y, we have

P [Y ≥ y] ≈ Ce−θy (A.7)

where θ satisfies (A.5) and C is given by

C =

Q


1−

c∑

j=1

R−je
−jθ




(1− e−θ)
d∑

k=1

kQkekθ

(A.8)

The quantities Q1,Q2, ..., Qd are probabilities defined by the behaviour of an unrestricted general
random walk with the step sizes defined above and with a negative expected step size (and hence
a downward drift) In fact, for k ≥ 0

Qk = P [Unrestricted random walk passes through statek]

so that by construction
d∑

k=1

Qk < 1 (as the random walk may never visit a positive state) and also

d∑

k=1

Qke
kθ = 1.

Finally Q is the probability that the random walk never reaches a positive state, that is

Q = 1−Q1 −Q2 − ...−Qk

Although these expressions are complicated, and require detailed computation, the most important
facts are contained in the formula in (A.7) and the knowledge that the constants C, θ and A can
be computed.
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CHAPTER B

ALGORITHMS FOR HMMs

B.1 THE FORWARD ALGORITHM

Define the forwards variables α(t, i) for t = 1, 2, 3, ..., n and i ∈ H by

α(t, i) = P [X1 = x1, ...,Xt = xt,Ht = ht = i]

that is, the joint probability of the observing the actual data up to position t and having the region
type at position t equal to i. Now, if, for all i, the values of α(n, i) are known, then as the terms
in (4.15) can be rewritten

f(x|h)f(h) = f(x, h) = P [X1 = x1, ...,Xt = xn,H1 = h1, ...,Ht = hn]

it can be shown that

f(x) =

nH∑

i=0

α(n, i)

Our objective will be to compute α(1, i), α(2, i), α(3, i), ..., α(n, i) recursively for each i ∈ H. First
we initialize by setting

α(1, i) = θip
(i)
x1 (B.1)

and then define, each t,

α(t+ 1, i) = P [X1 = x1, ...,Xt+1 = xt+1,Ht+1 = ht+1 = i]

=

nH∑

j=0

P [X1 = x1, ...,Xt+1 = xt+1,Ht+1 = ht+1 = i,Ht = ht = j]
(B.2)

using the Total Probability rule, partitioning with respect to the state in position t. However, we
have using conditional probability arguments that the summand can be rewritten

P [Xt+1 = xt+1|X1 = x1, ...,Xt = xt,Ht+1 = ht+1 = i,Ht = ht = j]×
P [X1 = x1, ...,Xt = xt,Ht+1 = ht+1 = i,Ht = ht = j]

which can be further simplified as, by assumption the first term is merely

P [Xt+1 = xt+1|Ht+1 = ht+1 = i] = p(i)xt+1 (B.3)

and also the second term is

P [Ht+1 = ht+1 = i|X1 = x1, ...,Xt = xt, Ht = ht = j]P [X1 = x1, ...,Xt = xt,Ht = ht = j]
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where

P [Ht+1 = ht+1 = i|X1 = x1, ...,Xt = xt, Ht = ht = j] = P [Ht+1 = ht+1 = i|Ht = ht = j] = θji
(B.4)

and

P [X1 = x1, ...,Xt = xt,Ht = ht = j] = α (t, j) (B.5)

Hence combining (B.2)-(B.5) gives

α(t+ 1, i) =

nH∑

j=0

p(i)xt+1θjiα (t, j) (B.6)

and so we have a recursion formula. In fact (B.1) and (B.6) combined give a method of computing
the (conditional) likelihood

f(x|P) =
∑

h

f(x|h,P)f(h|P) (B.7)

required for (i) that can be completed in n× n2H steps. This number is relatively small compared
to 2n× (nH + 1)n.

B.2 THE BACKWARD ALGORITHM

The algorithm described above can be alternately implemented in reverse time. Let

β(t, i) = P [Xt+1 = xt+1, ...,Xn = xn|Ht = ht = i]

Then we have similar recursion formulae

β(n− 1, i) =

nH∑

j=0

θijp
(j)
xn

and

β(t− 1, i) =

nH∑

j=0

p(j)xt θijβ(t, j)

and thus another means of computing (B.7).

B.3 THE VITERBI ALGORITHM

The Viterbi algorithm is a dynamic programming algorithm for computing ĥ, that is, the most
likely sequence of unobserved states, given the observed data

ĥ = argmax f (h|x) = argmax
f(x|h)f(h)

f(x)
= argmax f(x|h)f(h) = argmaxf(x, h)
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It proceeds as follows: first, define

δ1 (i) = P [H1 = h1 = i,X1 = x1]

and

δt (i) = max
h1,...,ht−1

P [H1 = h1, ...,Ht−1 = ht−1,Ht = ht = i,X1 = x1, ...,Xt = xt]

so that δt (i) is the maximum probability, over all possible routes, of ending up in unobserved state
i at time t. Then

max
i

δn (i) = max
h1,...,hn

P [H1 = h1, ...,Hn = hn = i,X1 = x1, ...,Xn = xn]

is the maximum probability, over all possible routes, of ending in unobserved state i at time n.
Secondly, compute the δs recursively; for each i define

δ1 (i) = θip
(i)
x1

and for t = 2, 3, ..., n, and 0 ≤ j ≤ nH

δt (j) = max
i

δt−1 (i) θijp
(j)
xt

Finally, let

ĥn = argmax
i

δn (i)

and for t = n− 1, n− 2, ..., 2, 1 define

ĥt = argmax
i

δt (i) θiĥt+1

so that ĥt for each t is the state that maximizes the joint probability. Eventually we have a
computed a vector

ĥ =
(
ĥ1, ..., ĥn

)
= argmax f(x, h)

that is required for step (ii).

B.4 THE BAUM-WELCH ALGORITHM

Normally to estimate parameters in probability models given a data sample, we would utilize
a formal estimation procedure such as maximum likelihood. Often this is a difficult problem for
HMMs; the likelihood and parameter space are complex and high-dimensional. TheBaum-Welch
algorithm provides a useful means of producing parameter estimates that are at least intuitively
appealing and appropriate in the majority of cases, if not theoretically optimal.

The parameters to be estimated in the HMM are the transition probabilities θij

θij = Pr (Region type iat time t→ Region type jat time t+ 1) = P [Ht+1 = j|Ht = i] i, j ∈ H,
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the emission probabilities in (4.11), written more simply as

p
(i)
j = P [Xt = j|Ht = i] i ∈ H, j ∈ X

(that is, the probability of observing character j in region type i), and for full generality, the
marginal probabilities.

πi = Pr (Regiontypei atposition1) i ∈ H

In order to estimate these parameters, we need a set of training samples or sequences Y(D) =
Y (1), Y (2)... with corresponding unobserved state sequences Q(D) = Q1,Q2, ...and for sample d

Yd =
(
y
(d)
1 , y

(d)
2 , ...

)
Qd =

(
q
(d)
1 , q

(d)
2 , ...

)

The Baum-Welch approach is an iterative procedure for estimating these parameters using the
training samples that proceeds, at each step, conditional on the observed sequence X = x. The
algorithm proceeds in the following steps

I Initialization: choose initial values for θij, p
(i)
j and πi from some appropriate probability

distribution, or from prior knowledge of the modelling situation

II Re-estimation:for a parameter update, set

π̂i = E
[
N
(1)
i |Y(D)

]

θ̂ij =
E

[
Nij |Y(D)

]

E
[
Ni|Y(D)

]

p̂
(i)
j =

E
[
Ni (j) |Y(D)

]

E
[
Ni|Y(D)

]

(B.8)

where the expectations of following random variables

N
(1)
i is the number of times region type i appears in position 1

Ni is the number of occurrences of region type i

Nij is the number of transitions from region type i to region type j

Ni(j) is the number of times character j appears in region type i

are conditional expectations given the training data sequence.

III Computation: Let

ξ
(d)
t (i, j) = P

[
q
(d)
t = i, q

(d)
t+1 = j|Y

]

for i, j ∈ H, where the superscript (d) indicates calculation from the training data sample d..
From the conditional probability definition, this expression can be re-written

ξ
(d)
t (i, j) =

P
[
q
(d)
t = i, q

(d)
t+1 = j,Y

]

P [Y]
(B.9)
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where the denominator can be computed using the Forward or Backward algorithm above,
and the numerator can be calculated by using the Forwards and Backwards variables α (., .)
and β (., .) of the previous algorithms

P
[
q
(d)
t = i, q

(d)
t+1 = j,Y

]
= α (t, i) θijp

(d,j)
yt+1β(t+ 1, j)

where p
(d,j)
yt+1 is the probability of observing character yt+1in from in position t + 1 in region

type j in the training data sample d. Let

I
(d)
t (i) =

{
1 ifq

(d)
t = i

0 otherwise

be an indicator random variable. Then the number of times region type i is observed in the
training sample is

∑

d

∑

t

I
(d)
t (i)

(recall d indexes training sample sequences) and the expected number of times is
∑

d

∑

t

E
[
I
(d)
t (i)|Q(d)

]
=

∑

d

∑

t

P
[
I
(d)
t (i) = 1|Q(d)

]
=

∑

d

∑

t

P
[
q
(d)
t = i|Q(d)

]

Using the Theorem of Total Probability and (B.9)

P
[
q
(d)
t = i|Q(d)

]
=

nH∑

j=1

ξ
(d)
t (i, j)

and hence the expected number of times region type i is observed in the training sample is

∑

d

∑

t

nH∑

j=1

ξ
(d)
t (i, j) . (B.10)

Similarly, the expected number of transitions from region type i to region type j is
∑

d

∑

t

ξ
(d)
t (i, j) (B.11)

These formulae can be substituted into (B.8) to compute the iterative procedure. The only
remaining quantity to be estimated is

E
[
Ni (j) |Y(D)

]

that appears in the numerator in the final iterative formula for p̂
(i)
j . This is estimated in a

similar fashion to the other quantities; let

I
(d)
t (i, j) =

{
1 if q

(d)
t = iand Y

(d)
t = j

0 otherwise

be the indicator variable that is equal to one if, for training sample d, character j occurs in
region type i at position t. Then

E
[
Ni (j) |Y(D)

]
=

∑

d

∑

t

∑

Y
(d)
t =j

nH∑

j=1

ξ
(d)
t (i, j)

which completes the computation.


