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Outline

• Time course data

• Linear Regression Models

• Estimation and Inference

• Flexible Models: Splines

• Model-based Clustering

• Models for correlated data
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Time Course Microarray Data

Microarrays are used to record the relative gene expression of
many thousands of genes simultaneously.

This is useful when we wish to compare the functional activity
across different genetic subgroups

• wild-type vs knockout

• heterozygote/double homozygote

• different developmental stages

Microarrays can detect differential expression across these
subgroups.
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Time Course Microarray Data

A more powerful experimental set-up is where we detect
changes in expression through time.

A typical design would involve carrying out repeated microarray
experiments on similar experimental units a different times over
a number of hours or days that would allow us to measure how
the differential expression changes in time.

This allows us to better understand patterns of regulation.
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Motivation

We motivate the subsequent statistical models by looking at
several real examples

• the principal model organism is the Anopheles Gambiae
mosquito

• we study patterns in regulation of immune defence
mounted in response to bacterial and chemical challenges

• this informs the study of malaria, and the immune defence
of the mosquito to infestation by the protozoan parasite
Plasmodium Falciparum
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The Global Impact of Malaria.

• Malaria is caused by the parasite Plasmodium falciparum
and is primarily spread by Anopheles Gambiae mosquito
vectors.
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• Alongside HIV and tuberculosis, it represents one of the
world’s most damaging infectious diseases.

• Malaria affects two to three hundred million people each
year, one million of whom are children living in
sub-Saharan Africa.

• Globally, two thousand million people (40% of the world’s
population) are at risk.

• Malaria research is ongoing: a key element is to
understand genetic regulation in the mosquito and in the
parasite.
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Mosquito and Parasite Genomics

• 2002: genomes of P. Falciparum and A. Gambiae mapped

• it has been demonstrated that the mosquito employs its
own immune system against the parasite.

• the components operating mosquito immune system and
their potential relevance to antimalarial responses are
being systematically dissected.

• special emphasis has been placed on the study of
anti-malarial responses involved in limiting the extent of
infection.
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Microarray studies

Microarray experiments carried out at Imperial College have
studied various aspects of genetic regulation.

• The immune defense system of the mosquito to infestation
by the parasite has come under study.

• An immune defense response is mounted whenever the
host mosquito is infected by the parasite; genes in the
mosquito genome known to be involved in immune defense
have been identified.

• Key task is to find genes with similar regulation patterns,
as they too may be involved with immune defense activity.
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• clear correlation of immune responses with the passage of
the parasite through the vector.

• the mosquito has become the organism of choice for
directly studying antiparasitic innate immune responses.

Recent genomic investigations in malaria include studies of

• mosquito with parasite infestation

• mosquito only under artificial experimental challenge
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Mosquito/Parasite profiles
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Profiles cluster within species ?
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Objectives

• to understand regulatory mechanisms within each organism

• to produce plausible models for the patterns of regulation

• to extract subsets of genes that have similar patterns

• to classify genes to functional classes of interest (i.e.
immune defense clusters)
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Objectives

• to produce models and algorithms that can and will be
used by researchers

• biologists often reluctant to use advanced statistical
methods

• computational feasibility is an important factor
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Time Course Data

Statistical analysis of gene expression profiles obtained by
microarray assays of mosquitos/cell-lines compromised by
bacterial and chemical agents (challenges):

• data comprise relative expression of 2771 genes/sequence
tags,

• probes selected from a specially constructed cDNA library.

• approximately 900 have associated/putative function.

• relative expression recorded at T = 6 time points, at 1, 4,
8, 12, 18 and 24 hours after the challenge.

We focus on a single bacterial challenge, Salmonella typhi.
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Salmonella typhi challenge data.
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Clustering Results
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Clusters 9 and 11
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Clusters 12 and 14
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Co-clustering for Multiple Challenges

The S. Typhi challenge data were obtained as one of a series of
experiments using (∼ 15) different challenges on the same gene
set. Here we look at only four:

• S. Typhi

• Listeria

• M. Luteus

• Zymosan (chemical)

We would expect similar patterns of regulation of immune
defense genes under different challenges.
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Gene Regulation in P. Falciparum

• Patterns of gene regulation in the parasite also under study

• CAMDA challenge data

• 4221 genes, 46 time points over 48 hours studied here

• expression relative to 48 hour transcriptome

• using hierarchical clustering, results in ∼ 30 clusters

• not strictly a clustering problem ?
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CAMDA data set
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Mosquito and parasite interaction

Mosquito and parasite regulation studied concurrently

• mosquitos studied longitudinally over 20 days after
infected blood meal

• 4200 genes/ESTs

• 1400 from each the Anopheles and Plasmodium genomes

• 1400 unidentified ESTs

• seven time points
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After clustering: Plasmodium
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Example: immune defense in humans

Nau et al (PNAS, 2002) investigated human macrophage
activation induced by different bacterial pathogens.

Learning about the gene response of innate immune cells to
these pathogens may provide insight into host defenses and
tactics used by pathogens to circumvent these defenses.

Sequences of microarray experiments were performed over a
duration of 24 hours for 8 different bacterial pathogens plus a
control.
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Nau et al data
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Clustered expression data
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Regression Models

We wish to explain the variation of a time-varying signal. We
will look at models of the form

y = f (x) + ε

where

• x will represent time

• y will represent the measured relative expression of a gene
or collection of genes

• f (.) is a non-constant function

• ε is a random measurement error term.
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Regression Models

The choice of f will crucially determine the types of patterns of
regulation that can be captured.

• No differential expression: f is constant

f (x) = a

• Curvilinear Pattern: Quadratic form

f (x) = a + bx + cx2

• Periodic Pattern: Trigonometric form

f (x) = a + b cos(λ1πx) + c sin(λ1πx)

We will see that each of these models can be regarded as
special cases of a specific model; the

LINEAR REGRESSION MODEL
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Regression Models

We will study the simplest form of a model in the class of
Linear Regression Models where the relationship between time
x and response y is a straight line.

Clearly for most real biological systems, the straight line model
is an unrealistic simplification;

• the model implies that, beyond the time frame of the
experiment the response increases (or decreases) over the
whole range of x

• we expect periodic behaviour, or perhaps return to
equilibrium after a stimulus, as time increases.

However, the properties of the model are best understood in
the simplest case, and generalization to more realistic situations
is then more straightforward.
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Simple Linear Regression

We will investigate models relating two quantities x and y
through equations of the form

y = ax + b

where a and b are constants (that is, a straight-line).

Note: variables x and y will not be treated exchangeably - we
will regard y as being a function of x .
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Such models are DETERMINISTIC, that is, if we know x
(and the values of the constants), we can compute y exactly
without error.

A more useful model allows for the possibility that the system
is not observed perfectly, that is, we do not observe (x , y) pairs
that are always consistent with a simple functional relationship.
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Probabilistic Models

In a probabilistic model, we allow for the possibility that y is
observed with random error, that is,

y = ax + b + ERROR

where ERROR is a random term that is present due to
imperfect observation of the system due to (i) measurement
error or (ii) missing information.

Note that we do not treat x and y exchangeably; x is a fixed
observed variable that is measured without error, whereas y is
an observed variable that is measured with random error.

We model the variation in y as a function of x . We observe
pairs (xi , yi ), i = 1, . . . , n.
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A Basic Probabilistic Model

Terminology:

• y - Dependent variable or independent variable

• x - Independent variable, or predictor, or covariate

The model we study takes the form

y = β0 + β1x + ε

where ε is a random error term, a random variable with mean
zero and finite variance (E [ε] = 0, Var [ε] = σ2); it represents
the error present in the measurement of y .

• β0 - Intercept parameter

• β1 - Slope parameter
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• β1 > 0 - increasing y with increasing x

• β1 < 0 - decreasing y with increasing x

• β1 = 0 - no relationship between x and y

Note:
E [Y |x ] = β0 + β1x

where E [Y |x ] is the expected value of Y for fixed value of x .

Recall the notation

• Y - a random variable with a probability distribution

• y - a fixed value that the variable Y can take.

Fundamental Problem: If we believe the straight-line model
with error is correct, how do we find the values of parameters
β0 and β1. We only have the observed data
{(xi , yi ), i = 1, . . . , n}.
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Least Squares Fitting

We select the best values of β0 and β1 by minimizing the error
in fit. For two data points (x1, y1) and (x2, y2), the errors in fit
are

e1 = y1 − (β0 + β1x1)

e2 = y2 − (β0 + β1x2)

respectively. But note that, potentially, e1 > 0 and e2 < 0 so
there is a possibility that these fitting errors cancel each other
out. Therefore we look at squared errors (as a large negative
error is as bad as a large positive error)

e2
1 = (y1 − (β0 + β1x1))

2

e2
2 = (y2 − (β0 + β1x2))

2
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For n data, we obtain n misfit squared errors

e2
1 , . . . , e2

n

We select β0 and β1 as the values of the parameters that
minimize SSE , where

SSE =
n∑

i=1

e2
i =

n∑

i=1

(yi − (β0 + β1xi ))
2

We wish to make the total misfit squared error as small as
possible.

SSE - sum of squared errors.

We could write
SSE = SSE (β0, β1)

to show the dependence of SSE on the parameters.

Minimization of SSE (β0, β1) is achieved analytically.
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It follows that the best parameters β̂0 and β̂1 are given by

β̂1 =
SSxy

SSxx
β̂0 = y − β̂1x

where

• Sum of Squares SSxx :

SSxx =
n∑

i=1

(xi − x)2

• Sum of Squares SSxy :

SSxy =
n∑

i=1

(xi − x)(yi − y)
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β̂0 and β̂1 are the least-squares estimates

y = β̂0 + β̂1x

is the least-squares line of best fit. The fitted-values are

ŷi = β̂0 + β̂1xi i = 1, . . . , n

and the residuals or residual errors are

êi = yi − ŷi = yi − β̂0 − β̂1xi i = 1, . . . , n
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Model Assumptions for Least-Squares

To utilize least-squares for the probabilistic model

Y = β0 + β1x + ε

we make the following assumptions

1. The expected error E [ε] is zero so that

E [Y ] = β0 + β1x

2. The variance of the error, Var [ε], is constant and does not
depend on x .

3. The probability distribution of ε is a symmetric
distribution about zero; a stronger assumption is that ε is
Normally distributed.

4. The errors for two different measured responses are
independent, i.e. the error ε1 in measuring y1 at x1 is
independent of the error ε2 in measuring y2 at x2.
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Parameter Estimation: Estimating σ2

Using the LS procedure, we can construct an estimate of the
error or residual error variance

Recall that
Var [ε] = σ2

An estimate of σ2 is

σ̂2 =
SSE (β̂0, β̂1)

n − 2
= s2

say.
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The denominator n − 2 is a degrees of freedom parameter of
the form

TOTAL NUMBER − NUMBER OF PARAMETERS
OF DATA ESTIMATED

or n − p, where in the simple linear regression, p = 2 (β̂0 and
β̂1). Note also that

SSE (β̂0, β̂1) =
n∑

i=1

(yi − ŷi )
2 = SSyy − β̂1SSxy

where

SSyy =
n∑

i=1

(yi − y)2
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Mathematical Formulation

To allow for generalization of the model, we consider a matrix
formulation.

For data pairs (x1, y1), . . . , (xn, yn) we form

• y = [y1, . . . , yn]
T (an n × 1 column vector)

• n× 2 matrix X, where the first column of X is a column of
1s, and the second column is

[x1, . . . , xn]
T

Thus the ith row is xi = [1 xi ]
T .

• ε = [ε1, . . . , εn]
T (an n × 1 column vector)

The notation T means matrix transpose
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Mathematical Formulation

We may then write the model in vector form

y = Xβ + ε

where Xβ is the matrix multiplication product of X and β,
which yields an n × 1 column vector.

The SSE quantity is then

SSE (β) = (y − Xβ)T (y − Xβ)

=
n∑

i=1

(yi − xiβ)2
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Least-Squares Estimates

It can be shown that the least-squares estimates of the model
parameters are given by

β̂ = (XTX)−1XTy

where

• β̂ = [β̂0, β̂1]
T are the least-squares estimates

• the notation −1 means matrix inversion
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Least-Squares Estimates

The estimate of σ2 is given by calculation of

SSE (β̂) = (y − Xβ̂)T (y − Xβ)

= yT (In − X(XTX)−1XT )y

and then

σ̂2 =
SSE (β̂)

n − p

where p = 2 is the dimension of β.
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Least-Squares Estimates

The estimated standard errors of β̂ are given by the matrix
variance calculation

Var[β̂] = σ̂2(XTX)−1

and the estimated standard errors are the diagonal elements of
this 2× 2 matrix.

These calculations look complicated, but are actually easy to
compute. In the case of simple linear regression

XTX =

[
n Sx

Sx Sxx

]

where

Sx =
n∑

i=1

xi Sxx =
n∑

i=1

x2
i



Time Series
Data Analysis

David A.
Stephens

Time Course
Data

Malaria

S. Typhi

Multiple
Challenges

P. Falciparum
CAMDA

Both Organisms

Nau et al.

Linear
Regression
Models

Simple Linear
Regression

Least-Squares

Mathematical
Formulation

Extending the
Model

Clustering
Time Course
Data

Bayesian
Inference in the
Linear Model

Bayesian
Model-based
Clustering

Least-Squares Estimates

Then

(XTX)−1 =
1

nSxx − S2
x

[
Sxx −Sx

−Sx n

]

and hence

β̂ =
1

nSxx − S2
x

[
Sxx −Sx

−Sx n

] [
Sy

Sxy

]

where

Sy =
n∑

i=1

yi Sxy =
n∑

i=1

xiyi
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Least-Squares Estimates

Hence

β̂ =
1

nSxx − S2
x

[
SxxSy − SxSxy

nSxy − SxSy

]

and

β̂0 =
SxxSy − SxSxy

nSxx − S2
x

β̂1 =
nSxy − SxSy

nSxx − S2
x

=
nSSxy

nSSxx

as before.
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Extending the model

The great advantage of writing the model in this apparently
more complicated form is that the model can be extended
from the simple straight line in a very straightforward way.

Provided the model can be written in the Linear Model form

y = Xβ + ε

where β contains the parameters in linear form, then the
least-squares can be found easily.
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Extending the model

Crucially, the form of the matrix X does not change the basic
approach to estimation. Provided we can invert XTX, we can
form the LS estimates. Thus X can include

• more terms in involving x (x2, x3, . . .) (polynomial
regression)

• non-linear functions of x (log x , exp(x), . . .)

• other predictors if they available (multiple regression)
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Extending the model

Example: A Harmonic Linear Regression Model.

Suppose that

f (x) = β0 +
k∑

j=1

[β1j cos(λjx) + β2j sin(λjx)]

where λ1, . . . , λk are frequencies

0 < λ < 2π.

The λj introduce periodic components that contribute to the
overall signal variation.
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Extending the model

Example: A Harmonic Linear Regression Model.

k = 1: Suppose that we wanted to fit a model with a 24 hour
cycle to hourly data. Then we would choose λ1 = 2π/24

f (x) = β0 + β11 cos(λ1x) + β21 sin(λ1x)

and for different choices of β0, β11, β21 we can obtain different
response profiles.

Without loss of generality, we assume β0 = 0.



Time Series
Data Analysis

David A.
Stephens

Time Course
Data

Malaria

S. Typhi

Multiple
Challenges

P. Falciparum
CAMDA

Both Organisms

Nau et al.

Linear
Regression
Models

Simple Linear
Regression

Least-Squares

Mathematical
Formulation

Extending the
Model

Clustering
Time Course
Data

Bayesian
Inference in the
Linear Model

Bayesian
Model-based
Clustering

Extending the model

Example: A Harmonic Linear Regression Model.

k = 1:
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Extending the model

Example: A Harmonic Linear Regression Model.

k = 2: Suppose that we wanted to fit a model with a 24 hour
cycle and a 36 hour cycle to hourly data. Then we would
choose λ1 = 2π/24 and λ2 = 2π/36

f (x) = β0 + β11 cos(λ1x) + β21 sin(λ1x)

+β12 cos(λ2x) + β22 sin(λ2x)

The period, κ of the cycle is the reciprocal of the
characteristic frequency, λ/(2π)
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Extending the model

Example: A Harmonic Linear Regression Model.

k = 2:
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Extending the model

Example: A Harmonic Linear Regression Model.

k = 4:
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Extending the model

Example: A Harmonic Linear Regression Model.

k = 8:
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CAMDA Data Clusters

Example: CAMDA Data: Cluster 1 (k = 2).
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CAMDA Data Clusters

Example: CAMDA Data: Cluster 5 (k = 2).
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CAMDA Data Clusters

Example: CAMDA Data: Cluster 10 (k = 2).
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Extending the model

Note that

(i) The function f (x) is continuous in x

(ii) For an observed data series, there is a limit to the number
of terms we can include.

(iii) The model is still a linear model ! The design matrix X
has n rows and 2k + 1 columns, and row i takes the form

xi = [1 cos(λ1xi ) sin(λ1xi ) · · · cos(λkxi ) sin(λkxi )]

This means that the usual least-squares approach can still
be used to fit the models to data.
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Extending the model

Example: A Piecewise Linear Model.

Define the truncation function ()+ as follows

(x)+ =

{
x x > 0
0 x ≤ 0

Consider the piecewise linear model

f (x) = β0 +
k∑

j=1

βj(x − κj)+

where 0 = κ1 < κ2 < · · · < κk .

This f is also continuous, it is non-linear in x , but is still a
linear model in terms of the parameters.
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Extending the model

Example: A Piecewise Linear Model.
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Extending the model

Example: A Piecewise Quadratic Model.

Consider the piecewise quadratic model

f (x) = β0 +
k∑

j=1

βj(x − κj)
2
+

Another continuous, non-linear in x , but linear in terms of the
parameters model .



Time Series
Data Analysis

David A.
Stephens

Time Course
Data

Malaria

S. Typhi

Multiple
Challenges

P. Falciparum
CAMDA

Both Organisms

Nau et al.

Linear
Regression
Models

Simple Linear
Regression

Least-Squares

Mathematical
Formulation

Extending the
Model

Clustering
Time Course
Data

Bayesian
Inference in the
Linear Model

Bayesian
Model-based
Clustering

Extending the model

Example: A Piecewise Quadratic Model.
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Summary

The formulation

y = Xβ + ε =
k∑

j=0

βjgj(x) + ε

is still a linear model. Therefore least-squares fitting is
straightforward.

The functions
g1(x), g2(x), . . . , gk(x)

are often called basis functions.
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Summary

It is possible to construct sophisticated functions f (x) by
means of this linear model construction; the precise form of the
design matrix X will depend on the choice of the basis
functions used to decompose f .

• linear piecewise

• quadratic, cubic

• splines

• Fourier (sine and cosine)

• “wavelets”

We need to be able to form X and compute (XTX)−1, but
often that can be done routinely.



Time Series
Data Analysis

David A.
Stephens

Time Course
Data

Malaria

S. Typhi

Multiple
Challenges

P. Falciparum
CAMDA

Both Organisms

Nau et al.

Linear
Regression
Models

Simple Linear
Regression

Least-Squares

Mathematical
Formulation

Extending the
Model

Clustering
Time Course
Data

Bayesian
Inference in the
Linear Model

Bayesian
Model-based
Clustering

Extension to Correlated Errors

The formulation
y = Xβ + ε

where the entries in ε are uncorrelated can be extended to the
more general correlated case. If

Var [ε] = Σ

then
β̂ = (XTΣ−1X)−1XTΣ−1y

are the Generalized Least Squares estimates.
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Model-based Clustering

We now utilize the basis function models above to facilitate a
model-based approach to clustering.

The advantages of using a flexible model-based approach are
that

• we can more accurately represent the likely structure in
the data

• we can perform model selection, that is, choose between
plausible alternative models

• we can integrate the clustering analysis with other results
or information.
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Bayesian Models for the Profiles

We model the gene expression profiles using a linear regression
model and non-linear basis functions in a Bayesian setting.

The model induces a stochastic process structure for the
underlying variation in expression; our clustering approach
utilizes the covariance structure of this process.

Aim is to use models that capture the characteristic behaviour
of expression profiles corresponding to different forms of
regulation.

Generically, we wish to capture the behaviour of the gene
expression ratio y as a function of time t and measurement
error.
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Recall: Regression Representation

For gene i at time t

yit = X (t)β + εt

where X (t) is a p-vector of specified basis functions of t, β is a
p-vector of basis coefficient parameters

Note: {εt} is an independent and Gaussian error process;

• plausible for our experiments

• assumption can be relaxed

• {Yit , t = 1, . . . ,T} conditionally independent,
unconditionally dependent.
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Truncated Polynomial Spline Basis Model

We utilize the following basis function model:

X (t)β = β0 +

p∑

j=1

βj(t − κj)
q
+

for q = 1, 2, ..., where (κ1, . . . , κp) are knot positions spanning
the range of t, and

(t − κj)
q
+ = max {0, (t − κj)}q

This function is continuous at the knot points; here we presume
that the knot positions are fixed at the data ordinates.

Any suitable basis function set may be used.
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Bayesian Inference

For inference, under the assumption that the random error
terms {εit} form an i.i.d Gaussian sequence with variance σ2.

The conditional distribution of the concatenated response
vectors of N genes Y is multivariate normal

Y|X, β, σ2 ∼ N
(
Xβ, σ2INT

)

where now X is NT × p and INT is the NT -dimensional
identity matrix.
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Bayesian Inference

Rather than use the least-squares approach we adopt the
Bayesian framework to obtain inference and model
assessment.

The Bayesian framework requires the specification of prior
distributions for the parameters of interest. These prior
distributions can usually be specified from genuine prior
knowledge of the experiment. For example,

• Microarray data have a measurement range (on the
log-relative expression scale) of -5 to 5.

• Regulation of gene expression in most cases causes
variation on the range -2 to 2

• The residual error variance is no greater than 1.

and so on.
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Bayesian Inference: Prior distribution

The simplest Bayesian analysis uses a conjugate prior
specification for

(
β, σ2

)

p
(
β|σ2

) ≡ N
(
m, σ2V

)
p

(
σ2

) ≡ IGamma
(α

2
,
γ

2

)

m is p× 1, V is p× p positive definite and symmetric, all other
parameters are scalars.
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Bayesian Inference: Posterior distribution

Then the posterior distribution can be computed as

p
(
β|y, σ2

) ≡ N
(
m∗, σ2V ∗)

and

p
(
σ2|y) ≡ IGamma

(
T + α

2
,
c + γ

2

)

which summarizes the information about the parameters in the
data.

In the case where the prior parameters take limiting values, we
recover the least-squares estimates.
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Terms in the Posterior

We consider a centered parameterization for β so that
m = 0, giving

m∗ =
(
XTX + V−1

)−1
XTy V ∗ =

(
XTX + V−1

)−1

and

c = yTy − yTX
(
XTX + V−1

)−1
XTy

= yT

(
In − X

(
XTX + V−1

)−1
XT

)
y
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Marginal Likelihood

Our clustering approach will be based on marginal likelihood
considerations.

p(y) =

∫ ∫
p

(
y|β, σ2

)
p

(
β|σ2

)
p

(
σ2

)
dβdσ2.

so that, for our basis function representation of a single profile

p(y) =

(
1

π

)T/2 γα/2Γ

(
T + α

2

)

Γ
(α

2

) |V ∗|1/2

|V |1/2

1

{c + γ}(T+α)/2
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A Cautionary Note

It might be tempting to use a vague prior specification, where
the prior input is as minimal as possible

However, a vague prior specification V−1 → 0 in leads to
p(y) → 0 and impropriety or indeterminacy.

Thus a fully non-informative prior specification cannot be used,
and can lead to the Lindley-Bartlett paradox ; here this
corresponds to choosing the model with 1 cluster, irrespective
of the data.

In practice, V can be chosen from prior knowledge, or to
approximately maximize the marginal likelihood.



Time Series
Data Analysis

David A.
Stephens

Time Course
Data

Malaria

S. Typhi

Multiple
Challenges

P. Falciparum
CAMDA

Both Organisms

Nau et al.

Linear
Regression
Models

Simple Linear
Regression

Least-Squares

Mathematical
Formulation

Extending the
Model

Clustering
Time Course
Data

Bayesian
Inference in the
Linear Model

Bayesian
Model-based
Clustering

Hierarchical Clustering

• a method of organizing a collection of objects into disjoint
sets

• uses a similarity/discrepancy measure/overall potential
function

• agglomerative clustering places each of the N items in its
own cluster, and then recursively (optimally) merges
currently existing clusters until a single cluster remains
(i.e. performs N − 1 merge operations in total)

• to find the ith optimal agglomeration requires
(N + 1− i)(N − i)/2 comparisons.

• at worst, an O(N3) procedure; here, N ≈ 2800
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Computationally Efficient Clustering

For both Euclidean distance clustering and our proposed
method, the number of calculations is drastically reduced by
noting the distance between any two clusters remains
unchanged through successive iterations until one is
agglomerated with another cluster.

The distance between two clusters will be based on the change
in marginal likelihood caused by merging clusters.

The the number of marginal likelihood calculations actually
required is

N2 − N − 1

and so only O
(
N2

)
.
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Bayesian Clustering

We propose clustering on the basis of the covariance
structure induced by the underlying stochastic process rather
than on Euclidean distances.

• hierarchical clustering approach assigns profiles to the
same cluster if they are similar in covariance terms.

• covariance determined by X and V ; marginally, vector
response Yi has covariance

XVXT + I
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Advantages of the approach

• it respects the time ordering of the data

• it can lead to biologically appropriate covariance structures
being discovered, as it can be used to incorporate
knowledge of the dynamics of the underlying processes
involved in the regulation of expression.

• we wish to cluster using the marginal probability that the
objects came from the same Gaussian process.

• choice of covariance matrix, induced by the basis function
representation, leads to important simplifications in the
calculation of the marginal likelihoods of each cluster, and
for the hierarchical steps.
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Computational Simplification

Let y(K) = (y1, y2, . . . , yNK
) be NK expression profiles in the

K th cluster. Then Y(K)|XK , β, σ2 ∼ N
(
XKβ, σ2ITK

)
. As each

profile has

• the same number of observed measurements T ,

• identical observation points, then

XT
K =

[
XT XT · · · XT

]

XT
KXK = NKXTX XT

Ky(K) =

NK∑

i=1

XTyi .

with Y(K) having length TNK , and XK being (TNK × p).
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Computational Simplification

Hence the pivotal quantities in the marginal likelihood can be
presented in simple form, giving

p(y(K)) =
g (NKT , α, γ) |V |−1/2

|NKXTX + V−1|1/2 {cK + γ}(NKT+α)/2
.

where cK is given by

(
NK∑

i=1

yT
i yi

)
−

(
NK∑

i=1

XTyi

)
(
NKXTX + V−1

)−1

(
NK∑

i=1

XTyi

)T
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Computational Simplification

Thus for each gene i we can compute

yT
i yi , XTyi

at the start, and then simply take sums over all genes in a
cluster to get the required quantities.

Furthermore, ∀n ∈ {1, . . . , N} we can also compute

W−1
n =

(
nXTX + V−1

)−1
, |Wn|

beforehand, as these {n} are the values which NK will take.
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A Full Bayesian Specification

To complete the Bayesian model, we need to specify the prior
on

• the number of clusters, C,
• the cluster sizes, N1, . . . ,NC ,

• the cluster decomposition, Z1, . . . ,Zn

Natural default choice uses the specification

P(C = C )P(N1, . . . ,NC |C = C )P(Z1, . . . ,Zn|N1, . . . ,NC )

• P(C = C ) = 1/N,C = 1, 2, . . . , N

• P(N1, . . . , NC |C = C ) Multinomial/Dirichlet

• P(Z1, . . . , Zn|N1, . . . ,NC ) Uniform allocation
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The Algorithm

• Starting with N clusters, each cluster containing the
expression levels for one gene.

• At each step, merge the two clusters which cause the
biggest increase (or smallest decrease) in the overall
marginal likelihood

I The posterior probability can be used in place of the
marginal likelihood.

I The Bayes Information Criterion (BIC) can also be used.

• Continue until one cluster remains.

• Take the optimal number of clusters as that which
maximized the marginal likelihood/BIC/posterior
probability.
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Results for the challenge experiment

• Multinomial-Dirichlet prior on the number and size of
clusters.

• Linear splines q = 1, knots at data points.

X (t)β = β0 +

p∑

j=1

βj(t − κj)+

Optimal number of clusters was 19.
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Clustered Series
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An Immune Defence Cluster ?
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Results

• Get ‘tighter’ clusters than Euclidean hierarchical clustering.

• Computationally feasible - agglomerative clustering takes
∼ 2 minutes on a 2Gb processor PC.

• Probabilistic model enables inference on the number of
clusters, and provides a rigorous framework for
classification of unknown genes.

• More advanced methods can be use to better optimize the
clusterings

I Markov chain Monte Carlo (MCMC) takes longer, but can
give clustering improvements.

I Simulated Annealing MCMC can find even higher
probability regions.
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