McGill University

Faculty of Science

Final Examination

MATH 556: Mathematical Statistics I

Examiner: Professor J. Nešlehová
Associate Examiner: Professor D.B. Wolfson

Date: Thursday, December 18, 2013
Time: 9:00 A.M. - 12:00 P.M.

Instructions

- This is a closed book exam.
- The exam comprises one title page, three pages of questions and two pages of formulas.
- Answer all six questions in the examination booklets provided.
- Calculators and translation dictionaries are permitted.
- A formula sheet is provided.

Good Luck!

Problem 1

The Fisher-Snedecor $F_{\nu_{1}, \nu_{2}}$ distribution with parameters $\nu_{1}>0$ and $\nu_{2}>0$ has density

$$
f(x)=\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)}\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\nu_{1} / 2} x^{\nu_{1} / 2-1}\left(1+\frac{\nu_{1} x}{\nu_{2}}\right)^{-\left(\nu_{1}+\nu_{2}\right) / 2}
$$

whenever $x>0$. Suppose that X is a random variable with the $F_{\nu_{1}, \nu_{2}}$ distribution.
(a) Compute the expectation of X. What can you say about the moment generating function of X ?
(5 Marks)
(b) Compute corr $(X, 1 / X)$ and list three drawbacks of Pearson's correlation coefficient. You can use, without proof, that $\operatorname{var}(X)=\left\{2 \nu_{2}^{2}\left(\nu_{1}+\nu_{2}-2\right)\right\} /\left\{\nu_{1}\left(\nu_{2}-2\right)^{2}\left(\nu_{2}-4\right)\right\}$.
(c) Prove that the random variable

$$
Y=\frac{\nu_{1} X}{\nu_{2}+\nu_{1} X}
$$

has a $\operatorname{Beta}\left(\nu_{1} / 2, \nu_{2} / 2\right)$ distribution.
(5 Marks)
(d) Suppose that Y is as in part (c) with $\nu_{1}=2$. Determine a transformation h so that $h(Y)$ is Geometric (1/2) as given on the formula sheet. State all results that you use. (5 Marks)
(e) Let X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m} be two random samples, each from respective univariate distributions and let S_{n}^{2} and T_{m}^{2}, respectively, denote the corresponding sample variances. State all conditions under which S_{n}^{2} / T_{m}^{2} has an $F_{n-1, m-1}$ distribution.
(3 Marks)

Problem 2

Suppose that the random pair (X, Y) has a bivariate Normal distribution with density given by

$$
f(x, y)=\frac{1}{2 \pi \sqrt{1-\varrho^{2}}} \exp \left\{-\frac{x^{2}+y^{2}-2 \varrho x y}{2\left(1-\varrho^{2}\right)}\right\}
$$

for all $x, y \in \mathbb{R}$ and some $\varrho \in(-1,1)$. Let also $W=X^{2}$ and $Z=Y^{2}$.
(a) Show that the joint density of (W, Z) is given, for $w, z>0$, by

$$
\begin{equation*}
\frac{1}{4 \pi \sqrt{\left(1-\varrho^{2}\right) w z}}\left\{1+\exp \left(-\frac{2 \varrho \sqrt{w z}}{1-\varrho^{2}}\right)\right\} \exp \left\{-\frac{w+z-2 \varrho \sqrt{w z}}{2\left(1-\varrho^{2}\right)}\right\} . \tag{5Marks}
\end{equation*}
$$

(b) Determine the conditional density of Z given $W=w$.
(5 Marks)
(c) Determine the joint distribution of (U, V), where

$$
U=Z+W, \quad V=\frac{Z}{Z+W}
$$

Under which condition are U and V independent? Which well-known distributions do they have in this case?

Problem 3

(a) Consider the following family of densities with parameters $\sigma>0$ and $\mu \in \mathbb{R}$:

$$
f(x ; \mu, \sigma)=\frac{1}{x \sqrt{2 \pi} \sigma} \exp \left\{-\frac{(\ln x-\mu)^{2}}{2 \sigma^{2}}\right\}, \quad x>0
$$

(i) Show that the family $\{f(\cdot ; \mu, \sigma)\}$ constitutes an exponential family.
(2 Marks)
(ii) Determine the natural parametrization and the natural parameter space.
(3 Marks)
(iii) Compute $\mathrm{E}(\ln X)^{3}$ when X has density $f(\cdot ; \mu, \sigma)$.
(5 Marks)
(b) Explain how a new family of densities can be constructed from a given density g by exponential tilting. Can this approach be used when $g(x)=f(x ; \mu, \sigma)$ from part (a) with some given values of μ and σ ? If yes, give the tilted family, if not, explain why. (5 Marks)
(c) Give an example of a family of distributions that is not an exponential family. (3 Marks)

Problem 4

The logarithmic series (LS) distribution is a discrete distribution with parameter $p \in(0,1)$ and probability mass function

$$
f(x)=-\frac{1}{\ln (p)} \frac{(1-p)^{x}}{x}, \quad x \in\{1,2,3, \ldots\} .
$$

(a) Derive the moment generating function of the $\operatorname{LS}(p)$ distribution and compute the mean and variance of $X \sim \operatorname{LS}(p)$.
(5 Marks)
(b) Consider the following two-level hierarchical model:

$$
\begin{gathered}
N \sim \operatorname{Poisson}(\lambda), \quad \lambda>0 \\
S \mid N=n \sim X_{1}+\cdots+X_{n},
\end{gathered}
$$

where X_{1}, \ldots, X_{n} are i.i.d. with $\operatorname{LS}(p)$ distribution, $p \in(0,1)$. Compute the mean and variance of the marginal (unconditional) distribution of S.
(c) Determine the marginal (unconditional) distribution of S.
(d) Prove that for any two variables X and Y with finite variances, X and $Y-\mathrm{E}(Y \mid X)$ are uncorrelated.
(5 Marks)

Problem 5

(a) Suppose that X and Y are random variables such that $\mathrm{E}|X|^{p}<\infty$ and $\mathrm{E}|Y|^{p}<\infty$ for some $p \geq 1$. Using any result shown in class, prove the so-called Minkowski inequality, viz.

$$
\left(\mathrm{E}|X+Y|^{p}\right)^{1 / p} \leq\left(\mathrm{E}|X|^{p}\right)^{1 / p}+\left(\mathrm{E}|Y|^{p}\right)^{1 / p} .
$$

(b) Suppose that X and Y are $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ random variables that are not necessarily independent or jointly Normal. Show that for any $x>0$,

$$
\begin{equation*}
\operatorname{Pr}(X+Y \geq x) \leq \frac{4\left(\sigma^{2}+\mu^{2}\right)}{x^{2}} \tag{5Marks}
\end{equation*}
$$

Problem 6

Let X_{1}, \ldots, X_{n} be a random sample of size $n \geq 2$ from the uniform distribution on the interval $(0, \theta)$. When θ is unknown, it can be estimated by the "maximum likelihood estimator"

$$
\hat{\theta}_{n}=\max \left(X_{1}, \ldots, X_{n}\right) .
$$

(a) Show that $\hat{\theta}_{n}$ converges in probability to θ as $n \rightarrow \infty$; estimators that have this property are said to be "consistent."
(b) Show that as $n \rightarrow \infty, n\left(\theta-\hat{\theta}_{n}\right)$ converges in distribution to an exponential random variable with mean θ.
(5 Marks)
(c) A differentiable function g is said to be a "variance stabilizing transformation" whenever the limiting variance of $g\left(\hat{\theta}_{n}\right)$ does not depend on θ. Identify this transformation and compute the limiting distribution of $n\left\{g(\theta)-g\left(\hat{\theta}_{n}\right)\right\}$.
(5 Marks)

DISCRETE DISTRIBUTIONS							
	$\begin{gathered} \text { RANGE } \\ \mathbb{X} \end{gathered}$	PARAMETERS	MASS FUNCTION f_{X}	$\begin{gathered} \mathrm{CDF} \\ F_{X} \end{gathered}$	$\mathrm{E}_{f_{X}}[X]$	$\operatorname{var}_{f_{X}}[X]$	$\begin{gathered} \mathrm{MGF} \\ M_{X} \end{gathered}$
Bernoulli (θ)	$\{0,1\}$	$\theta \in(0,1)$	$\theta^{x}(1-\theta)^{1-x}$		θ	$\theta(1-\theta)$	$1-\theta+\theta e^{t}$
$\operatorname{Binomial}(n, \theta)$	$\{0,1, \ldots, n\}$	$n \in \mathbb{Z}^{+}, \theta \in(0,1)$	$\binom{n}{x} \theta^{x}(1-\theta)^{n-x}$		$n \theta$	$n \theta(1-\theta)$	$\left(1-\theta+\theta e^{t}\right)^{n}$
Poisson(λ)	$\{0,1,2, \ldots\}$	$\lambda \in \mathbb{R}^{+}$	$\frac{e^{-\lambda} \lambda^{x}}{x!}$		λ	λ	$\exp \left\{\lambda\left(e^{t}-1\right)\right\}$
Geometric(θ)	$\{1,2, \ldots\}$	$\theta \in(0,1)$	$(1-\theta)^{x-1} \theta$	$1-(1-\theta)^{x}$	$\frac{1}{\theta}$	$\frac{(1-\theta)}{\theta^{2}}$	$\frac{\theta e^{t}}{1-e^{t}(1-\theta)}$
NegBinomial (r, p)	$\{0,1,2, \ldots\}$	$r \in \mathbb{Z}^{+}, p \in(0,1)$	$\binom{r+x-1}{x} p^{r}(1-p)^{x}$		$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^{2}}$	$\left(\frac{p}{1-e^{t}(1-p)}\right)^{r}$

For CONTINUOUS distributions (see over), define the GAMMA FUNCTION
$\operatorname{var}_{f_{Y}}[Y]=\sigma^{2} \operatorname{var}_{f_{X}}[X]$
$\mathrm{E}_{f_{Y}}[Y]=\mu+\sigma \mathrm{E}_{f_{X}}[X]$
$\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x, \quad \alpha>0$
and the LOCATION/SCALE transformation $Y=\mu+\sigma X$ gives
$f_{Y}(y)=f_{X}\left(\frac{y-\mu}{\sigma}\right) \frac{1}{\sigma}$
$F_{Y}(y)=F_{X}\left(\frac{y-\mu}{\sigma}\right)$
$M_{Y}(t)=e^{\mu t} M_{X}(\sigma t)$

Final Exam MATH 556

