McGill University

Faculty of Science

Final Examination

MATH 556: Mathematical Statistics I

Examiner: Professor J. Nešlehová Associate Examiner: Professor D.A. Stephens Date: Thursday, December 6, 2012 Time: 2:00 P.M. – 5:00 P.M.

Instructions

- This is a closed book exam.
- The exam comprises one title page, three pages of questions and two pages of formulas.
- Answer all six questions in the examination booklets provided.
- Calculators and translation dictionaries are permitted.
- A formula sheet is provided.

Good Luck!

Problem 1

The Student t_{ν} distribution with $\nu > 0$ degrees of freedom has density

$$f(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-(\nu+1)/2}, \quad x \in \mathbb{R}.$$

- (a) Determine the distribution of T^2 if T is Student t_{ν} . Can you recognize it? (5 Marks)
- (b) Let X be a random variable with density f_X and Y a strictly positive random variable with density f_Y which is independent of X. Prove that $W = X/\sqrt{Y}$ has density

$$f_W(w) = \int_{-\infty}^{\infty} f_X(wz) f_Y(z^2) 2z^2 \mathrm{d}z.$$

(5 Marks)

- (c) Suppose that X is Normal(0,1) and νY is χ^2_{ν} . Verify that X/\sqrt{Y} is Student t_{ν} . (4 Marks)
- (d) Suppose that T is a Student t_{ν} random variable with $\nu > 2$. Show that $E(T^2) \ge 1$.

(5 Marks)

(e) Let \bar{X}_n and S_n^2 be, respectively, the sample mean and the sample variance of a random sample X_1, \ldots, X_n . State the conditions under which $(\sqrt{n}\bar{X}_n)/\sqrt{S_n^2}$ is Student t_{n-1} .

(4 Marks)

Problem 2

Let X and Y be independent Exponential random variables, $X \sim \text{Exponential}(\lambda)$ and $Y \sim \text{Exponential}(\mu)$. Imagine that it is impossible to observe X and Y directly. Instead, you observe the random variables Z and W, where

$$Z = \min(X, Y) \quad \text{and} \quad W = \begin{cases} 1 & \text{if } Z = X, \\ 0 & \text{if } Z = Y. \end{cases}$$

- (a) Find the joint distribution of Z and W.
- (b) Find the marginal distributions of Z and W. (4 Marks)
- (c) Determine the conditional distribution of Z given W = i, i = 0, 1 and show that Z and W are independent. (4 Marks)

(4 Marks)

(8 Marks)

(5 Marks)

(5 Marks)

Problem 3

- (a) Define the exponential family of distributions, and explain what it means to say that the exponential family is (i) a strict k-parameter exponential family; (ii) in its canonical or natural parametrization.
 (2 Marks)
- (b) For the following families of distributions, assess whether the family is an exponential family. Where possible, write down the canonical or natural parameter space.
 - (i) The Inverse Gamma family with density

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-(\alpha+1)} e^{-\beta/x}, \quad x > 0$$

and parameters $\alpha > 0$ and $\beta > 0$.

(ii) The Gumbel family with density

$$f(x) = \frac{1}{\beta} \exp\left\{-\frac{x-\mu}{\beta} - e^{-(x-\mu)/\beta}\right\}, \quad x \in \mathbb{R}$$

and parameters $\mu \in \mathbb{R}$ and $\beta > 0$.

(c) Compute the covariance between 1/X and $\ln(1/X)$, where X is an Inverse Gamma random variable with parameters $\alpha > 0$ and $\beta > 0$. (5 Marks)

Problem 4

Suppose that N is a Poisson(λ) random variable, independent of the i.i.d. sequence X_1, X_2, \ldots of Gamma($\alpha, 1$) random variables, $\alpha, \lambda > 0$. Let S_N be given by

$$S_N = \sum_{i=1}^N X_i.$$

- (a) Compute the expectation and variance of S_N .
- (b) Show that the moment generating function of S_N is given by

$$M(t) = \exp\left\{\lambda\left(\frac{1}{1-t}\right)^{\alpha} - 1\right\}.$$

For which values of t does it exist?

- (c) Compute the saddlepoint approximation to the density of S_N . (5 Marks)
- (d) Determine the function g for which $E\{S_N g(N)\}^2$ is minimized. (5 Marks)

(5 Marks)

Problem 5

Let E_1, E_2, E_3 be independent Exponential(1) random variables and denote by

$$E_{(1)} \le E_{(2)} \le E_{(3)}$$

the corresponding order statistics.

(a) Prove that the variables

$$S_1 = 3E_{(1)}, \quad S_2 = 2\{E_{(2)} - E_{(1)}\}, \quad S_3 = E_{(3)} - E_{(2)}$$

are independent and Exponential(1).

- (b) Compute the marginal densities of $E_{(1)}$, $E_{(2)}$ and $E_{(3)}$. (5 Marks)
- (c) Prove that for all $i \neq j, i, j \in \{1, 2, 3\}$,

$$cov(E_{(i)}, E_{(j)}) > 0.$$

(Computing the joint distribution of $(E_{(i)}, E_{(j)})$ is NOT necessary). (5 Marks)

Problem 6

(a) Suppose that X_1, \ldots, X_n are $\text{Poisson}(\lambda_X)$ and Y_1, \ldots, Y_n are $\text{Poisson}(\lambda_Y)$, with all variables mutually independent. Consider the random variable M_n defined by $M_n = \bar{X}_n + \bar{Y}_n$, where

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i, \qquad \bar{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i$$

are the means of the two samples, respectively. Verify the convergence in probability of M_n to μ , for an appropriately chosen constant μ . (5 Marks)

- (b) For the random variables in part (a), for large n, find a Normal approximation to the distribution of the random variable Z_n defined by $Z_n = \exp(-\bar{X}_n)$. (5 Marks)
- (c) Suppose that the random variable X has a Poisson distribution with parameter λ . Consider the standardized random variable, Z_{λ} , defined by

$$Z_{\lambda} = \frac{X - \lambda}{\sqrt{\lambda}}$$

Prove that, as $\lambda \to \infty$, Z_{λ} converges in distribution to a Normal(0,1) random variable Z.

(5 Marks)

		DIS	CRETE DISTRIBUTI	ONS			
	RANGE	PARAMETERS	MASS FUNCTION	CDF	$\mathbf{E}_{f_X}\left[X ight]$	$\operatorname{Var}_{f_X}[X]$	MGF
	×		f_X	F_X			M_X
$Bernoulli(\theta)$	$\{0, 1\}$	$ heta\in(0,1)$	$ heta^x(1- heta)^{1-x}$		θ	heta(1- heta)	$1 - \theta + \theta e^t$
$Binomial(n, \theta)$	$\{0,1,,n\}$	$n\in\mathbb{Z}^+, heta\in(0,1)$	$\binom{n}{x} heta^x(1- heta)^{n-x}$		θu	n heta(1- heta)	$(1 - heta + heta e^t)^n$
$Poisson(\lambda)$	$\{0, 1, 2,\}$	$\lambda \in \mathbb{R}^+$	$\frac{e^{-\lambda}\lambda^x}{x!}$		~	~	$\exp{\{\lambda(e^t-1)\}}$
Geometric(heta)	$\{1, 2,\}$	$ heta\in(0,1)$	$(1- heta)^{x-1} heta$	$1-(1- heta)^x$	0	$rac{(1- heta)}{ heta^2}$	$\frac{\theta e^t}{1 - e^t(1 - \theta)}$
NegBinomial(r,p)	$\{0, 1, 2,\}$	$r \in \mathbb{Z}^+, p \in (0, 1)$	$\binom{r+x-1}{x}p^r(1-p)^x$		$rac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$	$\left(\frac{p}{1-e^t(1-p)}\right)^r$
For CONTINUOUS	distributions	(see over), define the GA	MMA FUNCTION				

 $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx, \quad \alpha > 0$

and the LOCATION/SCALE transformation $Y=\mu+\sigma X$ gives

$$f_Y(y) = f_X\left(\frac{y-\mu}{\sigma}\right)\frac{1}{\sigma} \qquad F_Y(y) = F_X\left(\frac{y-\mu}{\sigma}\right) \qquad M_Y(t) = e^{\mu t}M_X(\sigma t) \qquad E_{f_Y}\left[Y\right] = \mu + \sigma E_{f_X}\left[X\right] \qquad \operatorname{Var}_{f_Y}\left[Y\right] = \sigma^2 \operatorname{Var}_{f_X}\left[X\right]$$

			CONTINUOUS DISTR	LIBUTIONS			
		PARAMS.	PDF	CDF	$\mathbb{E}_{f_X}\left[X\right]$	$\operatorname{Var}_{f_X}[X]$	MGF
	\mathbb{X}		f_X	F_X			M_X
Uniform(lpha,eta) (standard: $lpha=0,eta=1)$	(lpha,eta)	$\alpha < \beta \in \mathbb{R}$	$\frac{1}{\beta - \alpha}$	$\frac{x-\alpha}{eta-\alpha}$	$\frac{(\alpha + \beta)}{2}$	$\frac{\left(\beta-\alpha\right)^2}{12}$	$\frac{e^{\beta t} - e^{\alpha t}}{t\left(\beta - \alpha\right)}$
$Exponential(\lambda)$ (standard: $\lambda = 1$)	+ *	$\lambda \in \mathbb{R}^+$	$\lambda e^{-\lambda x}$	$1 - e^{-\lambda x}$	~ ~	$\frac{1}{\lambda^2}$	$\left(rac{\lambda}{\lambda-t} ight)$
Gamma(lpha,eta) (standard: $eta=1)$	民+	$\alpha,\beta\in\mathbb{R}^+$	$rac{eta lpha}{\Gamma(lpha)} x^{lpha-1} e^{-eta x}$		$\beta \overline{\beta}$	$\frac{\alpha}{\beta^2}$	$\left(rac{eta}{eta-t} ight)^lpha$
Normal (μ, σ^2) (standard: $\mu = 0, \sigma = 1$)	Ř	$\mu\in\mathbb{R},\sigma\in\mathbb{R}^+$	$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$		Ħ	σ ²	$e^{\{\mu t + \sigma^2 t^2/2\}}$
χ^2_{ν}	玉+	$ u \in \mathbb{N} $	$\frac{1}{\Gamma\left(\frac{\nu}{2}\right)2^{\nu/2}} x^{(\nu/2)-1} e^{-x/2}$		Ŕ	2 <i>v</i>	$(1 - 2t)^{- u/2}$
Pareto(heta, lpha)	民+	$ heta, lpha \in \mathbb{R}^+$	$\frac{\alpha\theta^{\alpha}}{(\theta+x)^{\alpha+1}}$	$1 - \left(rac{ heta}{ heta + x} ight)^lpha$	$\frac{\theta}{\alpha - 1}$ (if $\alpha > 1$)	$\frac{\alpha\theta^2}{(\alpha-1)(\alpha-2)}$ (if $\alpha > 2$)	
Beta(lpha,eta)	(0, 1)	$\alpha,\beta\in\mathbb{R}^+$	$rac{\Gamma(lpha+eta)}{\Gamma(lpha)\Gamma(eta)}x^{lpha-1}(1-x)^{eta-1}$		$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	