McGill University

Faculty of Science

Final Examination

MATH 556: Mathematical Statistics I

Examiner: Professor J. Nešlehová
Associate Examiner: Professor D.A. Stephens

Date: Thursday, December 6, 2012
Time: 2:00 P.M. - 5:00 P.M.

Instructions

- This is a closed book exam.
- The exam comprises one title page, three pages of questions and two pages of formulas.
- Answer all six questions in the examination booklets provided.
- Calculators and translation dictionaries are permitted.
- A formula sheet is provided.

Good Luck!

Problem 1

The Student t_{ν} distribution with $\nu>0$ degrees of freedom has density

$$
f(x)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu \pi} \Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{x^{2}}{\nu}\right)^{-(\nu+1) / 2}, \quad x \in \mathbb{R} .
$$

(a) Determine the distribution of T^{2} if T is Student t_{ν}. Can you recognize it?
(5 Marks)
(b) Let X be a random variable with density f_{X} and Y a strictly positive random variable with density f_{Y} which is independent of X. Prove that $W=X / \sqrt{Y}$ has density

$$
\begin{equation*}
f_{W}(w)=\int_{-\infty}^{\infty} f_{X}(w z) f_{Y}\left(z^{2}\right) 2 z^{2} \mathrm{~d} z \tag{5Marks}
\end{equation*}
$$

(c) Suppose that X is $\operatorname{Normal}(0,1)$ and νY is χ_{ν}^{2}. Verify that X / \sqrt{Y} is Student t_{ν}. (4 Marks)
(d) Suppose that T is a Student t_{ν} random variable with $\nu>2$. Show that $\mathrm{E}\left(T^{2}\right) \geq 1$.
(5 Marks)
(e) Let \bar{X}_{n} and S_{n}^{2} be, respectively, the sample mean and the sample variance of a random sample X_{1}, \ldots, X_{n}. State the conditions under which $\left(\sqrt{n} \bar{X}_{n}\right) / \sqrt{S_{n}^{2}}$ is Student t_{n-1}.
(4 Marks)

Problem 2

Let X and Y be independent Exponential random variables, $X \sim \operatorname{Exponential}(\lambda)$ and $Y \sim$ Exponential (μ). Imagine that it is impossible to observe X and Y directly. Instead, you observe the random variables Z and W, where

$$
Z=\min (X, Y) \quad \text { and } \quad W= \begin{cases}1 & \text { if } \quad Z=X \\ 0 & \text { if } \quad Z=Y\end{cases}
$$

(a) Find the joint distribution of Z and W.
(4 Marks)
(b) Find the marginal distributions of Z and W.
(c) Determine the conditional distribution of Z given $W=i, i=0,1$ and show that Z and W are independent.
(4 Marks)

Problem 3

(a) Define the exponential family of distributions, and explain what it means to say that the exponential family is (i) a strict k-parameter exponential family; (ii) in its canonical or natural parametrization.
(2 Marks)
(b) For the following families of distributions, assess whether the family is an exponential family. Where possible, write down the canonical or natural parameter space.
(i) The Inverse Gamma family with density

$$
f(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-(\alpha+1)} e^{-\beta / x}, \quad x>0
$$

and parameters $\alpha>0$ and $\beta>0$.
(ii) The Gumbel family with density

$$
\begin{equation*}
f(x)=\frac{1}{\beta} \exp \left\{-\frac{x-\mu}{\beta}-e^{-(x-\mu) / \beta}\right\}, \quad x \in \mathbb{R} \tag{8Marks}
\end{equation*}
$$

and parameters $\mu \in \mathbb{R}$ and $\beta>0$.
(c) Compute the covariance between $1 / X$ and $\ln (1 / X)$, where X is an Inverse Gamma random variable with parameters $\alpha>0$ and $\beta>0$.

Problem 4

Suppose that N is a Poisson (λ) random variable, independent of the i.i.d. sequence X_{1}, X_{2}, \ldots of Gamma $(\alpha, 1)$ random variables, $\alpha, \lambda>0$. Let S_{N} be given by

$$
S_{N}=\sum_{i=1}^{N} X_{i}
$$

(a) Compute the expectation and variance of S_{N}.
(b) Show that the moment generating function of S_{N} is given by

$$
M(t)=\exp \left\{\lambda\left(\frac{1}{1-t}\right)^{\alpha}-1\right\}
$$

For which values of t does it exist?
(c) Compute the saddlepoint approximation to the density of S_{N}.
(d) Determine the function g for which $\mathrm{E}\left\{S_{N}-g(N)\right\}^{2}$ is minimized.

Problem 5

Let E_{1}, E_{2}, E_{3} be independent Exponential(1) random variables and denote by

$$
E_{(1)} \leq E_{(2)} \leq E_{(3)}
$$

the corresponding order statistics.
(a) Prove that the variables

$$
\begin{equation*}
S_{1}=3 E_{(1)}, \quad S_{2}=2\left\{E_{(2)}-E_{(1)}\right\}, \quad S_{3}=E_{(3)}-E_{(2)} \tag{5Marks}
\end{equation*}
$$

are independent and Exponential(1).
(b) Compute the marginal densities of $E_{(1)}, E_{(2)}$ and $E_{(3)}$.
(c) Prove that for all $i \neq j, i, j \in\{1,2,3\}$,

$$
\begin{equation*}
\operatorname{cov}\left(E_{(i)}, E_{(j)}\right)>0 . \tag{5Marks}
\end{equation*}
$$

(Computing the joint distribution of $\left(E_{(i)}, E_{(j)}\right)$ is NOT necessary).

Problem 6

(a) Suppose that X_{1}, \ldots, X_{n} are Poisson $\left(\lambda_{X}\right)$ and Y_{1}, \ldots, Y_{n} are Poisson $\left(\lambda_{Y}\right)$, with all variables mutually independent. Consider the random variable M_{n} defined by $M_{n}=\bar{X}_{n}+\bar{Y}_{n}$, where

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \quad \bar{Y}_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}
$$

are the means of the two samples, respectively. Verify the convergence in probability of M_{n} to μ, for an appropriately chosen constant μ.
(5 Marks)
(b) For the random variables in part (a), for large n, find a Normal approximation to the distribution of the random variable Z_{n} defined by $Z_{n}=\exp \left(-\bar{X}_{n}\right)$.
(5 Marks)
(c) Suppose that the random variable X has a Poisson distribution with parameter λ. Consider the standardized random variable, Z_{λ}, defined by

$$
Z_{\lambda}=\frac{X-\lambda}{\sqrt{\lambda}} .
$$

Prove that, as $\lambda \rightarrow \infty, Z_{\lambda}$ converges in distribution to a $\operatorname{Normal}(0,1)$ random variable Z.

Final Exam MATH 556

DISCRETE DISTRIBUTIONS							
	RANGE X	PARAMETERS	MASS FUNCTION f_{X}	$\begin{gathered} \mathrm{CDF} \\ F_{X} \end{gathered}$	$\mathrm{E}_{f_{X}}[X]$	$\operatorname{Var}_{f_{X}}[X]$	$\begin{gathered} \mathrm{MGF} \\ M_{X} \end{gathered}$
Bernoulli(θ)	$\{0,1\}$	$\theta \in(0,1)$	$\theta^{x}(1-\theta)^{1-x}$		θ	$\theta(1-\theta)$	$1-\theta+\theta e^{t}$
Binomial (n, θ)	$\{0,1, \ldots, n\}$	$n \in \mathbb{Z}^{+}, \theta \in(0,1)$	$\binom{n}{x} \theta^{x}(1-\theta)^{n-x}$		$n \theta$	$n \theta(1-\theta)$	$\left(1-\theta+\theta e^{t}\right)^{n}$
Poisson(λ)	$\{0,1,2, \ldots\}$	$\lambda \in \mathbb{R}^{+}$	$\frac{e^{-\lambda} \lambda^{x}}{x!}$		λ	λ	$\exp \left\{\lambda\left(e^{t}-1\right)\right\}$
Geometric(θ)	$\{1,2, \ldots\}$	$\theta \in(0,1)$	$(1-\theta)^{x-1} \theta$	$1-(1-\theta)^{x}$	$\frac{1}{\theta}$	$\frac{(1-\theta)}{\theta^{2}}$	$\frac{\theta e^{t}}{1-e^{t}(1-\theta)}$
NegBinomial (r, p)	$\{0,1,2, \ldots\}$	$r \in \mathbb{Z}^{+}, p \in(0,1)$	$\binom{r+x-1}{x} p^{r}(1-p)^{x}$		$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^{2}}$	$\left(\frac{p}{1-e^{t}(1-p)}\right)^{r}$

For CONTINUOUS distributions (see over), define the GAMMA FUNCTION

Final Exam MATH 556

CONTINUOUS DISTRIBUTIONS							
		PARAMS.		CDF	$\mathrm{E}_{f_{X}}[X]$	$\operatorname{Var}_{f_{X}}[X]$	MGF
	X		f_{X}	F_{X}			M_{X}
$\begin{aligned} & \operatorname{Uniform}(\alpha, \beta) \\ & (\text { standard: } \alpha=0, \beta=1) \end{aligned}$	(α, β)	$\alpha<\beta \in \mathbb{R}$	$\frac{1}{\beta-\alpha}$	$\frac{x-\alpha}{\beta-\alpha}$	$\frac{(\alpha+\beta)}{2}$	$\frac{(\beta-\alpha)^{2}}{12}$	$\frac{e^{\beta t}-e^{\alpha t}}{t(\beta-\alpha)}$
$\begin{aligned} & \text { Exponential }(\lambda) \\ & (\text { standard: } \lambda=1) \end{aligned}$	\mathbb{R}^{+}	$\lambda \in \mathbb{R}^{+}$	$\lambda e^{-\lambda x}$	$1-e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^{2}}$	$\left(\frac{\lambda}{\lambda-t}\right)$
$\begin{aligned} & \operatorname{Gamma}(\alpha, \beta) \\ & (\text { standard: } \beta=1) \end{aligned}$	\mathbb{R}^{+}	$\alpha, \beta \in \mathbb{R}^{+}$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$		$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^{2}}$	$\left(\frac{\beta}{\beta-t}\right)^{\alpha}$
$\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ (standard: $\mu=0, \sigma=1$)	\mathbb{R}	$\mu \in \mathbb{R}, \sigma \in \mathbb{R}^{+}$	$\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}$		μ	σ^{2}	$e^{\left\{\mu t+\sigma^{2} t^{2} / 2\right\}}$
χ_{ν}^{2}	\mathbb{R}^{+}	$\nu \in \mathbb{N}$	$\frac{1}{\Gamma\left(\frac{\nu}{2}\right) 2^{\nu / 2}} x^{(\nu / 2)-1} e^{-x / 2}$		ν	2ν	$(1-2 t)^{-\nu / 2}$
$\operatorname{Pareto}(\theta, \alpha)$	\mathbb{R}^{+}	$\theta, \alpha \in \mathbb{R}^{+}$	$\frac{\alpha \theta^{\alpha}}{(\theta+x)^{\alpha+1}}$	$1-\left(\frac{\theta}{\theta+x}\right)^{\alpha}$	$\frac{\theta}{\alpha-1}$ (if $\alpha>1$)	$\begin{aligned} & \frac{\alpha \theta^{2}}{(\alpha-1)(\alpha-2)} \\ & (\text { if } \alpha>2) \end{aligned}$	
$\operatorname{Beta}(\alpha, \beta)$	$(0,1)$	$\alpha, \beta \in \mathbb{R}^{+}$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}$		$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$	

