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Instructions

• This is a closed book exam.

• Answer all six questions in the examination booklets provided.

• Calculators and translation dictionaries are permitted.

• A formula sheet is provided.

Good Luck!



Problem 1

Recall that the Fp,q distribution has density

f(x|p, q) =
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, x > 0.

(a) Suppose that X has an Fp,q distribution. Find the distribution of

Y =
pX

q + pX

and compute its expectation. (5 marks)

(b) Suppose that U and V are independent random variables with densities fU and fV ,
respectively. Prove that the density of W = U/V is given by

fW (w) =
∫ ∞

−∞
|v|fU (wv)fV (v)dv.

(4 marks)

(c) Prove that if U ∼ χ2
p and V ∼ χ2

q are independent,

Z =
U/p

V/q
∼ Fp,q.

(4 marks)

(d) Suppose that S2
1 and S2

2 are the sample variances of the random samples X1, . . . , Xm and
Y1, . . . , Yn, respectively. State all the necessary conditions under which the ratio S2

1/S2
2 has

an Fp,q distribution. (4 marks)

Problem 2

Let X and Y be independent, X ∼ Gamma(α, 1) and Y ∼ Gamma(β, 1) and define

T = X + Y, Z =
X

X + Y
, W =

Y

X + Y
.

(a) Compute the joint distribution of (T,Z). (5 marks)

(b) Compute the (marginal) distributions of Z and W . (4 marks)

(c) Compute the correlation coefficients cor(T,Z) and cor(Z,W ). What can you say about
the independence of T and Z, and of Z and W , respectively? Hint: computing the joint
distribution of (Z,W ) is NOT necessary. (4 marks)



Problem 3

Consider the Pareto family with densities

f(x|α) = α

(
1

1 + x

)α+1

, x > 0.

(a) Show that the family f(x|α) is an exponential family. Determine the natural parametrization
and the natural parameter space. (4 marks)

(b) Suppose that X has density f(x|α). Compute the mean and the variance of log(X + 1).

(3 marks)

(c) Explain how a new exponential family g(x|t) can be constructed from some arbitrary density
g by exponential tilting. (3 marks)

(d) Can a new exponential family be constructed by tilting of the Pareto density with some
α > 0? If yes, give it, if not, explain why. (4 marks)

(e) Give an example of a family of distributions which is not an exponential family. Provide a
thorough explanation for your choice. (4 marks)

Problem 4

(a) Suppose that each of a random number N ∼ Poisson(λ) of independent patients is testing
a drug. For each patient, the success of a drug is described by a Bernoulli variable Xi,
independent of N . Because the patients are different, we are reluctant to assume that the
success probabilities are constant. Instead, we assume that Xi|Pi is Bernoulli(Pi), where
Pi ∼ Beta(α, β) for some fixed parameters α > 0, β > 0, and P1, P2, . . . are independent.

(1) Determine the distribution of Y . (5 marks)

(2) Compute the mean and variance of the unconditional distribution of the total number
of successes, Y =

∑N
i=1 Xi. (4 marks)

(b) Let X and Y be two random variables with finite variances.

(1) Show that X and Y − E(Y |X) are uncorrelated. (4 marks)

(2) Show that var(Y − E(Y |X)) = E(var(Y |X)). (4 marks)



Problem 5

Recall without proof the MGF and the mean and variance of the NegBinomial(r, p) distribution
with parameters p ∈ (0, 1) and r ∈ N, as given on the formula sheet.

(a) Let X1, . . . , Xn be a random sample from the NegBinomial(r, p) distribution. Determine the
distribution of Xn = (1/n)(X1 + · · ·+ Xn). (4 marks)

(b) Prove Jensen’s inequality, that is, for any random variable Y with finite expectation and a
convex function g such that E|g(X)| < ∞, Eg(X) ≥ g(EX). You can use, without proof, the
fact that the one-sided derivatives of any convex function exist everywhere. (5 marks)

(c) In the context of part (a), consider the statistic

Tn =
r

Xn + r

Show that E(Tn) ≥ p, and that, at the same time, Tn → p in probability as n →∞.

(4 marks)

(d) Show how the distribution function of an NegBinomial(r, p) random variable can be
approximated by the distribution function of the standard normal distribution for r large.

(5 marks)

Problem 6

Consider an i.i.d. sequence X1, X2, . . . from the distribution function

F (x|α) = 1− (1− x)α, x ∈ (0, 1),

where α > 0 is a parameter.

(a) Show that the distribution function of

Mn = max(X1, . . . , Xn)

is given by (1− (1− x)α)n if x ∈ (0, 1). (3 marks)

(b) Prove that if a sequence {Yn} of arbitrary random variables satisfies Yn  a as n →∞ where
a ∈ R is a constant, then Yn → a in probability as n →∞. (5 marks)

(c) Prove that Mn → 1 in probability as n →∞. (4 marks)

(d) Does n1/α(Mn − 1) converge in distribution as n → ∞? If yes, determine the limiting
distribution, if not, explain why. (5 marks)
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