McGill University

Faculty of Science

Final Examination

MATH 556: Mathematical Statistics I

Examiner: Professor J. Nešlehová
Associate Examiner: Professor D. A. Stephens

Date: Tuesday, December 7, 2010
Time: 9:00 A.M. - 12:00 P.M.

Instructions

- This is a closed book exam.
- Answer all six questions in the examination booklets provided.
- Calculators and translation dictionaries are permitted.
- A formula sheet is provided.

Problem 1

Recall that the $F_{p, q}$ distribution has density

$$
f(x \mid p, q)=\frac{\Gamma\left(\frac{p+q}{2}\right)}{\Gamma\left(\frac{p}{2}\right) \Gamma\left(\frac{q}{2}\right)}\left(\frac{p}{q}\right)^{p / 2} x^{p / 2-1}\left(1+\left(\frac{p}{q}\right) x\right)^{-(p+q) / 2}, \quad x>0 .
$$

(a) Suppose that X has an $F_{p, q}$ distribution. Find the distribution of

$$
Y=\frac{p X}{q+p X}
$$

and compute its expectation.
(5 marks)
(b) Suppose that U and V are independent random variables with densities f_{U} and f_{V}, respectively. Prove that the density of $W=U / V$ is given by

$$
f_{W}(w)=\int_{-\infty}^{\infty}|v| f_{U}(w v) f_{V}(v) \mathrm{d} v
$$

(4 marks)
(c) Prove that if $U \sim \chi_{p}^{2}$ and $V \sim \chi_{q}^{2}$ are independent,

$$
Z=\frac{U / p}{V / q} \sim F_{p, q} .
$$

(4 marks)
(d) Suppose that S_{1}^{2} and S_{2}^{2} are the sample variances of the random samples X_{1}, \ldots, X_{m} and Y_{1}, \ldots, Y_{n}, respectively. State all the necessary conditions under which the ratio S_{1}^{2} / S_{2}^{2} has an $F_{p, q}$ distribution.
(4 marks)

Problem 2

Let X and Y be independent, $X \sim \operatorname{Gamma}(\alpha, 1)$ and $Y \sim \operatorname{Gamma}(\beta, 1)$ and define

$$
T=X+Y, \quad Z=\frac{X}{X+Y}, \quad W=\frac{Y}{X+Y} .
$$

(a) Compute the joint distribution of (T, Z).
(5 marks)
(b) Compute the (marginal) distributions of Z and W.
(c) Compute the correlation coefficients $\operatorname{cor}(T, Z)$ and $\operatorname{cor}(Z, W)$. What can you say about the independence of T and Z, and of Z and W, respectively? Hint: computing the joint distribution of (Z, W) is NOT necessary.

Problem 3

Consider the Pareto family with densities

$$
f(x \mid \alpha)=\alpha\left(\frac{1}{1+x}\right)^{\alpha+1}, \quad x>0
$$

(a) Show that the family $f(x \mid \alpha)$ is an exponential family. Determine the natural parametrization and the natural parameter space.
(b) Suppose that X has density $f(x \mid \alpha)$. Compute the mean and the variance of $\log (X+1)$.
(c) Explain how a new exponential family $g(x \mid t)$ can be constructed from some arbitrary density g by exponential tilting.
(3 marks)
(d) Can a new exponential family be constructed by tilting of the Pareto density with some $\alpha>0$? If yes, give it, if not, explain why.
(4 marks)
(e) Give an example of a family of distributions which is not an exponential family. Provide a thorough explanation for your choice.
(4 marks)

Problem 4

(a) Suppose that each of a random number $N \sim \operatorname{Poisson}(\lambda)$ of independent patients is testing a drug. For each patient, the success of a drug is described by a Bernoulli variable X_{i}, independent of N. Because the patients are different, we are reluctant to assume that the success probabilities are constant. Instead, we assume that $X_{i} \mid P_{i}$ is $\operatorname{Bernoulli}\left(P_{i}\right)$, where $P_{i} \sim \operatorname{Beta}(\alpha, \beta)$ for some fixed parameters $\alpha>0, \beta>0$, and P_{1}, P_{2}, \ldots are independent.
(1) Determine the distribution of Y.
(2) Compute the mean and variance of the unconditional distribution of the total number of successes, $Y=\sum_{i=1}^{N} X_{i}$.
(4 marks)
(b) Let X and Y be two random variables with finite variances.
(1) Show that X and $Y-\mathrm{E}(Y \mid X)$ are uncorrelated.
(4 marks)
(2) Show that $\operatorname{var}(Y-\mathrm{E}(Y \mid X))=\mathrm{E}(\operatorname{var}(Y \mid X))$.

Problem 5

Recall without proof the MGF and the mean and variance of the $\operatorname{NegBinomial}(r, p)$ distribution with parameters $p \in(0,1)$ and $r \in \mathbb{N}$, as given on the formula sheet.
(a) Let X_{1}, \ldots, X_{n} be a random sample from the $\operatorname{NegBinomial}(r, p)$ distribution. Determine the distribution of $\bar{X}_{n}=(1 / n)\left(X_{1}+\cdots+X_{n}\right)$.
(4 marks)
(b) Prove Jensen's inequality, that is, for any random variable Y with finite expectation and a convex function g such that $\mathrm{E}|g(X)|<\infty, \mathrm{E} g(X) \geq g(\mathrm{E} X)$. You can use, without proof, the fact that the one-sided derivatives of any convex function exist everywhere.
(5 marks)
(c) In the context of part (a), consider the statistic

$$
T_{n}=\frac{r}{\bar{X}_{n}+r}
$$

Show that $\mathrm{E}\left(T_{n}\right) \geq p$, and that, at the same time, $T_{n} \rightarrow p$ in probability as $n \rightarrow \infty$.
(4 marks)
(d) Show how the distribution function of an $\operatorname{NegBinomial}(r, p)$ random variable can be approximated by the distribution function of the standard normal distribution for r large.
(5 marks)

Problem 6

Consider an i.i.d. sequence X_{1}, X_{2}, \ldots from the distribution function

$$
F(x \mid \alpha)=1-(1-x)^{\alpha}, \quad x \in(0,1),
$$

where $\alpha>0$ is a parameter.
(a) Show that the distribution function of

$$
M_{n}=\max \left(X_{1}, \ldots, X_{n}\right)
$$

is given by $\left(1-(1-x)^{\alpha}\right)^{n}$ if $x \in(0,1)$.
(3 marks)
(b) Prove that if a sequence $\left\{Y_{n}\right\}$ of arbitrary random variables satisfies $Y_{n} \rightsquigarrow a$ as $n \rightarrow \infty$ where $a \in \mathbb{R}$ is a constant, then $Y_{n} \rightarrow a$ in probability as $n \rightarrow \infty$.
(5 marks)
(c) Prove that $M_{n} \rightarrow 1$ in probability as $n \rightarrow \infty$.
(d) Does $n^{1 / \alpha}\left(M_{n}-1\right)$ converge in distribution as $n \rightarrow \infty$? If yes, determine the limiting distribution, if not, explain why.

DISCRETE DISTRIBUTIONS							
	RANGE \mathbb{X}	PARAMETERS	MASS FUNCTION f_{X}	$\begin{gathered} \mathrm{CDF} \\ F_{X} \end{gathered}$	$\mathrm{E}_{f_{X}}[X]$	$\operatorname{Var}_{f_{X}}[X]$	$\begin{aligned} & \text { MGF } \\ & M_{X} \end{aligned}$
Bernoulli(θ)	$\{0,1\}$	$\theta \in(0,1)$	$\theta^{x}(1-\theta)^{1-x}$		θ	$\theta(1-\theta)$	$1-\theta+\theta e^{t}$
$\operatorname{Binomial}(n, \theta)$	$\{0,1, \ldots, n\}$	$n \in \mathbb{Z}^{+}, \theta \in(0,1)$	$\binom{n}{x} \theta^{x}(1-\theta)^{n-x}$		$n \theta$	$n \theta(1-\theta)$	$\left(1-\theta+\theta e^{t}\right)^{n}$
Poisson(λ)	$\{0,1,2, \ldots\}$	$\lambda \in \mathbb{R}^{+}$	$\frac{e^{-\lambda} \lambda^{x}}{x!}$		λ	λ	$\exp \left\{\lambda\left(e^{t}-1\right)\right\}$
Geometric (θ)	$\{1,2, \ldots\}$	$\theta \in(0,1)$	$(1-\theta)^{x-1} \theta$	$1-(1-\theta)^{x}$	$\frac{1}{\theta}$	$\frac{(1-\theta)}{\theta^{2}}$	$\frac{\theta e^{t}}{1-e^{t}(1-\theta)}$
NegBinomial (r, p)	$\{0,1,2, \ldots\}$	$r \in \mathbb{Z}^{+}, p \in(0,1)$	$\binom{r+x-1}{x} p^{r}(1-p)^{x}$		$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^{2}}$	$\left(\frac{p}{1-e^{t}(1-p)}\right)^{r}$

For CONTINUOUS distributions (see over), define the GAMMA FUNCTION
$\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x$
and the LOCATION/SCALE transformation $Y=\mu+\sigma X$ gives
$f_{Y}(y)=f_{X}\left(\frac{y-\mu}{\sigma}\right) \frac{1}{\sigma}$

CONTINUOUS DISTRIBUTIONS							
	X	PARAMS.	PDF f_{X}	CDF F_{X}	$\mathrm{E}_{f_{X}}[X]$	$\operatorname{Var}_{f X}[X]$	MGF M_{X}
$\operatorname{Uniform}(\alpha, \beta)$ $($ standard model $\alpha=0, \beta=1)$	(α, β)	$\alpha<\beta \in \mathbb{R}$	$\frac{1}{\beta-\alpha}$	$\frac{x-\alpha}{\beta-\alpha}$	$\frac{(\alpha+\beta)}{2}$	$\frac{(\beta-\alpha)^{2}}{12}$	$\frac{e^{\beta t}-e^{\alpha t}}{t(\beta-\alpha)}$
Exponential(λ) (standard model $\lambda=1$)	\mathbb{R}^{+}	$\lambda \in \mathbb{R}^{+}$	$\lambda e^{-\lambda x}$	$1-e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^{2}}$	$\left(\frac{\lambda}{\lambda-t}\right)$
$\operatorname{Gamma}(\alpha, \beta)$ (standard model $\beta=1$)	\mathbb{R}^{+}	$\alpha, \beta \in \mathbb{R}^{+}$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$		$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^{2}}$	$\left(\frac{\beta}{\beta-t}\right)^{\alpha}$
$\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ (standard model $\mu=0, \sigma=1$)	\mathbb{R}	$\mu \in \mathbb{R}, \sigma \in \mathbb{R}^{+}$	$\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}$		μ	σ^{2}	$e^{\left\{\mu t+\sigma^{2} t^{2} / 2\right\}}$
χ_{ν}^{2}	\mathbb{R}^{+}	$\nu \in \mathbb{N}$	$\frac{1}{\Gamma\left(\frac{\nu}{2}\right) 2^{\nu / 2}} x^{(\nu / 2)-1} e^{-x / 2}$		ν	2ν	$(1-2 t)^{-\nu / 2}$
$\operatorname{Pareto}(\theta, \alpha)$	\mathbb{R}^{+}	$\theta, \alpha \in \mathbb{R}^{+}$	$\frac{\alpha \theta^{\alpha}}{(\theta+x)^{\alpha+1}}$	$1-\left(\frac{\theta}{\theta+x}\right)^{\alpha}$	$\frac{\theta}{\alpha-1}$ (if $\alpha>1$)	$\begin{aligned} & \frac{\alpha \theta^{2}}{(\alpha-1)(\alpha-2)} \\ & (\text { if } \alpha>2) \end{aligned}$	
$\operatorname{Beta}(\alpha, \beta)$	$(0,1)$	$\alpha, \beta \in \mathbb{R}^{+}$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}$		$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$	

