McGill University

Faculty of Science

Final Examination

MATH 556: Mathematical Statistics I

Examiner: Professor J. Nešlehová Associate Examiner: Professor D. A. Stephens Date: Tuesday, December 7, 2010 Time: 9:00 A.M. – 12:00 P.M.

Instructions

- This is a closed book exam.
- Answer all six questions in the examination booklets provided.
- Calculators and translation dictionaries are permitted.
- A formula sheet is provided.

Problem 1

Recall that the $F_{p,q}$ distribution has density

$$f(x|p,q) = \frac{\Gamma\left(\frac{p+q}{2}\right)}{\Gamma\left(\frac{p}{2}\right)\Gamma\left(\frac{q}{2}\right)} \left(\frac{p}{q}\right)^{p/2} x^{p/2-1} \left(1 + \left(\frac{p}{q}\right)x\right)^{-(p+q)/2}, \quad x > 0.$$

(a) Suppose that X has an $F_{p,q}$ distribution. Find the distribution of

$$Y = \frac{pX}{q + pX}$$

and compute its expectation.

(b) Suppose that U and V are independent random variables with densities f_U and f_V , respectively. Prove that the density of W = U/V is given by

$$f_W(w) = \int_{-\infty}^{\infty} |v| f_U(wv) f_V(v) \mathrm{d}v.$$

(4 marks)

(c) Prove that if $U \sim \chi_p^2$ and $V \sim \chi_q^2$ are independent,

$$Z = \frac{U/p}{V/q} \sim F_{p,q}$$

(4 marks)

(d) Suppose that S_1^2 and S_2^2 are the sample variances of the random samples X_1, \ldots, X_m and Y_1, \ldots, Y_n , respectively. State all the necessary conditions under which the ratio S_1^2/S_2^2 has an $F_{p,q}$ distribution. (4 marks)

Problem 2

Let X and Y be independent, $X \sim \text{Gamma}(\alpha, 1)$ and $Y \sim \text{Gamma}(\beta, 1)$ and define

$$T = X + Y, \quad Z = \frac{X}{X + Y}, \quad W = \frac{Y}{X + Y}.$$

- (a) Compute the joint distribution of (T, Z).
- (b) Compute the (marginal) distributions of Z and W. (4 marks)
- (c) Compute the correlation coefficients cor(T, Z) and cor(Z, W). What can you say about the independence of T and Z, and of Z and W, respectively? *Hint: computing the joint distribution of* (Z, W) *is NOT necessary.* (4 marks)

(5 marks)

(5 marks)

Problem 3

Consider the Pareto family with densities

$$f(x|\alpha) = \alpha \left(\frac{1}{1+x}\right)^{\alpha+1}, \quad x > 0.$$

- (a) Show that the family $f(x|\alpha)$ is an exponential family. Determine the natural parametrization and the natural parameter space. (4 marks)
- (b) Suppose that X has density $f(x|\alpha)$. Compute the mean and the variance of $\log(X+1)$.

(3 marks)

- (c) Explain how a new exponential family g(x|t) can be constructed from some arbitrary density g by exponential tilting. (3 marks)
- (d) Can a new exponential family be constructed by tilting of the Pareto density with some $\alpha > 0$? If yes, give it, if not, explain why. (4 marks)
- (e) Give an example of a family of distributions which is not an exponential family. Provide a thorough explanation for your choice. (4 marks)

Problem 4

- (a) Suppose that each of a random number $N \sim \text{Poisson}(\lambda)$ of independent patients is testing a drug. For each patient, the success of a drug is described by a Bernoulli variable X_i , independent of N. Because the patients are different, we are reluctant to assume that the success probabilities are constant. Instead, we assume that $X_i|P_i$ is Bernoulli (P_i) , where $P_i \sim \text{Beta}(\alpha, \beta)$ for some fixed parameters $\alpha > 0$, $\beta > 0$, and P_1, P_2, \ldots are independent.
 - (1) Determine the distribution of Y.

(5 marks)

- (2) Compute the mean and variance of the unconditional distribution of the total number of successes, $Y = \sum_{i=1}^{N} X_i$. (4 marks)
- (b) Let X and Y be two random variables with finite variances.
 - (1) Show that X and Y E(Y|X) are uncorrelated. (4 marks)
 - (2) Show that $\operatorname{var}(Y \operatorname{E}(Y|X)) = \operatorname{E}(\operatorname{var}(Y|X)).$ (4 marks)

Problem 5

Recall without proof the MGF and the mean and variance of the NegBinomial(r, p) distribution with parameters $p \in (0, 1)$ and $r \in \mathbb{N}$, as given on the formula sheet.

- (a) Let X_1, \ldots, X_n be a random sample from the NegBinomial(r, p) distribution. Determine the distribution of $\overline{X}_n = (1/n)(X_1 + \cdots + X_n)$. (4 marks)
- (b) Prove Jensen's inequality, that is, for any random variable Y with finite expectation and a convex function g such that $E|g(X)| < \infty$, $Eg(X) \ge g(EX)$. You can use, without proof, the fact that the one-sided derivatives of any convex function exist everywhere. (5 marks)
- (c) In the context of part (a), consider the statistic

$$T_n = \frac{r}{\overline{X}_n + r}$$

Show that $E(T_n) \ge p$, and that, at the same time, $T_n \to p$ in probability as $n \to \infty$.

(4 marks)

(d) Show how the distribution function of an NegBinomial(r, p) random variable can be approximated by the distribution function of the standard normal distribution for r large.

(5 marks)

(3 marks)

Problem 6

Consider an i.i.d. sequence X_1, X_2, \ldots from the distribution function

$$F(x|\alpha) = 1 - (1 - x)^{\alpha}, \quad x \in (0, 1),$$

where $\alpha > 0$ is a parameter.

(a) Show that the distribution function of

$$M_n = \max(X_1, \dots, X_n)$$

is given by $(1 - (1 - x)^{\alpha})^n$ if $x \in (0, 1)$.

- (b) Prove that if a sequence $\{Y_n\}$ of arbitrary random variables satisfies $Y_n \rightsquigarrow a$ as $n \to \infty$ where $a \in \mathbb{R}$ is a constant, then $Y_n \to a$ in probability as $n \to \infty$. (5 marks)
- (c) Prove that $M_n \to 1$ in probability as $n \to \infty$. (4 marks)
- (d) Does $n^{1/\alpha}(M_n 1)$ converge in distribution as $n \to \infty$? If yes, determine the limiting distribution, if not, explain why. (5 marks)

DISCRETE DISTRIBUTIONS	MGF	M_X	$1 - \theta + \theta e^t$	$(1 - \theta + \theta e^t)^n$	$\exp\left\{\lambda\left(e^{t}-1\right)\right\}$	$\frac{\theta e^t}{1-e^t(1-\theta)}$	$\left(\frac{p}{1-e^t(1-p)}\right)^r$
	$\operatorname{Var}_{f_X}[X]$		heta(1- heta)	n heta(1- heta)	X	$rac{(1- heta)}{ heta^2}$	$\frac{r(1-p)}{p^2}$
	$\mathrm{E}_{f_X}\left[X ight]$		θ	heta u	ĸ	$\frac{1}{ heta}$	$rac{r(1-p)}{p}$
	CDF	F_X				$1-(1- heta)^x$	
	MASS FUNCTION	f_X	$ heta^x(1- heta)^{1-x}$	$\binom{n}{x} heta^x(1- heta)^{n-x}$	$\frac{e^{-\lambda}\lambda^x}{x!}$	$(1- heta)^{x-1} heta$	$\binom{r+x-1}{x}p^r(1-p)^x$
	PARAMETERS		$ heta\in(0,1)$	$n\in\mathbb{Z}^+, heta\in(0,1)$	$\lambda \in \mathbb{R}^+$	$ heta\in(0,1)$	$r \in \mathbb{Z}^+, p \in (0, 1)$
	RANGE	X	$\{0, 1\}$	$\{0,1,,n\}$	$\{0, 1, 2,\}$	$\{1, 2,\}$	$\{0, 1, 2,\}$
			Bernoulli(heta)	$Binomial(n, \theta)$	$Poisson(\lambda)$	Geometric(heta)	NegBinomial(r,p)

For CONTINUOUS distributions (see over), define the GAMMA FUNCTION

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} \, dx$$

and the LOCATION/SCALE transformation $Y=\mu+\sigma X$ gives

$$f_{Y}(y) = f_{X}\left(\frac{y-\mu}{\sigma}\right)\frac{1}{\sigma} \qquad F_{Y}(y) = F_{X}\left(\frac{y-\mu}{\sigma}\right) \qquad M_{Y}(t) = e^{\mu t}M_{X}(\sigma t) \qquad E_{f_{Y}}\left[Y\right] = \mu + \sigma E_{f_{X}}\left[X\right] \qquad \text{Var}_{f_{Y}}\left[Y\right] = \sigma^{2} \text{Var}_{f_{X}}\left[X\right]$$

CONTINUOUS DISTRIBUTIONS	PARAMS. PDF CDF $E_{f_X}[X]$ Var $_{f_X}[X]$ MGF	\mathbb{X} f_X F_X M_X	$\exists \alpha = 0, \beta = 1 $ (α, β) $\alpha < \beta \in \mathbb{R}$ $\frac{1}{\beta - \alpha}$ $\frac{x - \alpha}{\beta - \alpha}$ $\frac{(\alpha + \beta)}{\beta - \alpha}$ $\frac{(\beta - \alpha)^2}{2}$ $\frac{e^{\beta t} - e^{\alpha t}}{t(\beta - \alpha)}$	$ \begin{array}{ c c c c c c c c } 1 & \mathbb{R}^+ & \lambda \in \mathbb{R}^+ & \lambda e^{-\lambda x} & 1 - e^{-\lambda x} & \frac{1}{\lambda} & \frac{1}{\lambda^2} & \frac{1}{\lambda^2} & \left(\frac{\lambda}{\lambda - t}\right) \\ 1 & \lambda = 1 \end{array} $	$\mathbb{R}^{+} \alpha, \beta \in \mathbb{R}^{+} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} \qquad \qquad \frac{\alpha}{\beta} \qquad \frac{\alpha}{\beta^{2}} \qquad \frac{\alpha}{\beta^{2}} \qquad \left(\frac{\beta}{\beta-t}\right)^{\alpha}$	$\mathbb{R} \mu \in \mathbb{R}, \sigma \in \mathbb{R}^+ \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\} \qquad \mu \sigma^2 \qquad e^{\{\mu t + \sigma^2 t^2/2\}}$	$\mathbb{R}^{+} \nu \in \mathbb{N} \qquad \frac{1}{\Gamma\left(\frac{\nu}{2}\right) 2^{\nu/2}} x^{(\nu/2)-1} e^{-x/2} \qquad \nu \qquad 2\nu \qquad (1-2t)^{-\nu/2}$	$\mathbb{R}^{+} \theta, \alpha \in \mathbb{R}^{+} \frac{\alpha \theta^{\alpha}}{(\theta + x)^{\alpha + 1}} \qquad 1 - \left(\frac{\theta}{\theta + x}\right)^{\alpha} \frac{\theta}{\alpha - 1} \frac{\alpha \theta^{2}}{(\alpha - 1)(\alpha - 2)} \qquad (\text{if } \alpha > 1) (\text{if } \alpha > 2)$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\left \begin{array}{ccc} {}^{(0,1)} & {}^{(0,1)} \\ \end{array}\right \xrightarrow{\alpha,\beta \leq 2\pi} \left \Gamma(\alpha)\Gamma(\beta) \xrightarrow{\alpha = 2\pi} \\ \end{array}\right \left \Gamma(\alpha)\Gamma(\beta) \xrightarrow{\alpha = 2\pi} \\ \end{array}\right \left \left \alpha + \beta \right \\ \end{array}\right $
			$Uniform(\alpha,\beta)$ (standard model $\alpha = 0, \beta = 1$	$Exponential(\lambda)$ (standard model $\lambda = 1$)	$Gamma(\alpha,\beta)$ (standard model $\beta = 1$)	Normal (μ, σ^2) (standard model $\mu = 0, \sigma = 1$	χ^2_{ν}	Pareto(heta, lpha)	Beta(lpha,eta)	