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1. (a) From first principles (univariate transformation theorem also acceptable): for y > 0

FY (y) = P [Y ≤ y] = P

[
1
X
≤ y

]
= P

[
X ≥ 1

y

]
= 1− FX

(
y−1

)

and therefore

fY (y) =
1
y2

fX

(
y−1

)
=

1
y2

1
Γ (α)

(
1
y

)α−1

exp
{
−1

y

}
=

1
Γ (α)

(
1
y

)α+1

exp
{
−1

y

}
y > 0

and zero otherwise.

6 MARKS

By direct calculation

EfY
[Y ] =

∫ ∞

0

1
x

1
Γ(α)

xα−1e−x dx =
1

Γ(α)

∫ ∞

0

x(α−1)−1e−x dx =
Γ(α− 1)

Γ(α)
=

1
α− 1

provided α > 1; if α ≤ 1, then the expectation does not exist.

3 MARKS

(b) From first principles: range of V is R+, and thus for v > 0

FV (v) = P [V ≤ v] = P
[
U2 ≤ v

]
= P

[−√v ≤ U ≤ √
v
]

= FU

(√
v
)− FU

(−√v
)

and therefore

fV (v) =
1

2
√

v

[
fU

(√
v
)

+ fU

(−√v
)]

Here fU (u) = exp {−u− exp {−u}}, so

fV (v) =
1

2
√

v

[
exp

{−√v − exp
{−√v

}}
+ exp

{√
v − exp

{√
v
}}]

v > 0

and zero otherwise.

6 MARKS

(c) We have

P [X < Y ] =
∫∫

A

fX,Y (x, y) dxdy =
∫∫

A

fX (x) fY (y)dxdy

by independence, where
A ≡ {(x, y) : 0 < x < y < ∞}

3 MARKS

Hence

P [X < Y ] =
∫ ∞

0

{∫ y

0

fX (x) dx

}
fY (y)dy =

∫ ∞

0

FX (y) fY (y)dy.

Changing variables in the integral y → t = FY (y) ∴ y = F−1
Y (t), we have

P [X < Y ] =
∫ 1

0

FX

(
F−1

Y (t)
)
fY

(
F−1

Y (t)
) dy

dt
dt.

and
dy

dt
=

[
dt

dy

]−1

= [fY (y)]−1 =
[
fY

(
F−1

Y (t)
)]−1

and the result follows.

7 MARKS
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2. (a) Using the multivariate transformation theorem

(a) We have that X(2) ≡ R× R, and

g1(t1, t2) =
t1

t1 + t2
g2(t1, t2) = t1 + t2

(b) Inverse transformations:

Y1 =
Z1

Z1 + Z2

Y2 = Z1 + Z2




⇔

{
Z1 = Y1Y2

Z2 = (1− Y1)Y2

and thus
g−1
1 (t1, t2) = t1t2 g−1

2 (t1, t2) = (1− t1) t2

(c) Range: straightforwardly we have that 0 < Y1 < 1, Y2 > 0, so Y(2) = (0, 1)× R+

(d) The Jacobian for points (y1, y2) ∈ Y(2) is

Dy1,y2 =




∂z1

∂y1

∂z1

∂y2

∂z2

∂y1

∂z2

∂y2


 =

[
y2 y1

−y2 1− y1

]
⇒ |J (y1, y2)| = |detDy1,y2 | = y2

(e) For the joint pdf we have for (y1, y2) ∈ Y(2), by independence of Z1 and Z2

fY1,Y2 (y1, y2) = fZ1,Z2 (y1y2, (1− y1) y2)× y2

= fZ1 (y1y2)× fZ2 ((1− y1) y2)× y2

= exp {−y1y2} exp {− (1− y1) y2} × y2 = y2 exp {−y2}

and zero otherwise. Note that Y1 and Y2 are independent, as their joint pdf factorizes into
the respective marginal pdfs, that is, fY1,Y2 (y1, y2) = {1} × {y2 exp {−y2}} - not necessary
for full marks.

15 MARKS

(b) (i) For 0 ≤ x ≤ n, using the Beta integral function

fX (x) =
∫ 1

0

fX|Y (x|y) fY (y)dy =
∫ 1

0

(
n

x

)
yx (1− y)n−x

dy

=
(

n

x

)
Γ(x + 1)Γ (n− x + 1)

Γ (n + 2)
=

1
n + 1

5 MARKS

(ii) For x > 0, using the Gamma integral

fX (x) =
∫ ∞

0

fX|Y (x|y) fY (y)dy =
∫ ∞

0

ye−xyβe−βydy

= β

∫ ∞

0

ye−(x+β)ydy = β
Γ (2)

(x + β)2
=

β

(x + β)2

5 MARKS
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3. (a) We have KX(t) = log MX(t), hence

K
(1)
X (t) =

d

ds
{KX(t)}s=t =

d

ds
{log MX(t)}s=t =

M
(1)
X (t)

MX(t)
=⇒ K

(1)
X (0) =

M
(1)
X (0)

MX(0)
= EfX

[ X ]

as MX(0) = 1. Similarly

K
(2)
X (t) =

MX(t)M (2)
X (t)−

{
M

(1)
X (t)

}2

{MX(t)}2

and hence

K
(2)
X (0) =

MX(0)M (2)
X (0)−

{
M

(1)
X (0)

}2

{MX(0)}2 = EfX
[ X2 ]− {EfX

[ X ]}2

and hence K
(2)
X (0) = V arfX

[ X ]
8 MARKS

(b) By inspection, c = λ/2, and so

CX(t) = EfX [eitX ] =
∫ ∞

−∞
eitxfX(x) dx =

1
2

∫ ∞

−∞
eitxλe−λ|x| dx

But fX is symmetric about zero, so

CX(t) =
∫ ∞

0

cos(tx)λe−λx dx =
∫ ∞

0

cos(sy)e−y dy

where s = t/λ. Integrating by parts yields

CX(t) =
1

1 + (t/λ)2
=

λ2

λ2 + t2

as

CX(t) =
∫ ∞

0

cos(ty)e−y dy =
[− cos(ty)e−y

]∞
0
−

∫ ∞

0

t sin(ty)e−y dy

= 1− t
[
sin(ty)e−y

]∞
0
− t

∫ ∞

0

t cos(ty)e−y dy

= 1− t2CX(t)

gives

CX(t) =
1

1 + t2
.

8 MARKS

(c) The cf for Z ∼ N(0, 1) can be written

CZ(t) = exp{−t2/2} = {exp{−t2/(2n)}}n = {CXn(t)}n

for n = 1, 2, . . ., where CXn(t) is the cf of Xn ∼ N(0, σ2/n). This holds for arbitrary positive
integer n, so Z is infinitely divisible.

4 MARKS

(d) We have

CX(t) = cos(t) =
1
2
eit +

1
2
e−it

and hence it follows that X has a discrete distribution with pmf with equal probability on −1
and 1, that is, is symmetric, and hence the skewness is zero.

5 MARKS
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4. This question is bookwork:

(a) Fix b > 0. Let

g(a; b) =
1
p

ap +
1
q

bq − ab.

We require that g(a; b) ≥ 0 for all a. Differentiating wrt a for fixed b yields

g(1)(a; b) = ap−1 − b

so that g(a; b) is minimized (the second derivative is strictly positive at all a) when ap−1 = b,
and at this value of a, the function takes the value

1
p

ap +
1
q

(ap−1)q − a(ap−1) =
1
p

ap +
1
q

ap − ap = 0

as 1/p + 1/q = 1 =⇒ (p − 1)q = p. As the second derivative is strictly positive at all a, the
minimum is attained at the unique value of a where ap−1 = b, where, raising both sides to
power q yields ap = bq.

8 MARKS

For the first inequality,

EfX,Y
[|XY |] =

∫∫
|xy|fX,Y (x, y) dxdy ≥

∫∫
xyfX,Y (x, y) dxdy = EfX,Y

[XY ]

and

EfX,Y [XY ] =
∫∫

xyfX,Y (x, y) dxdy ≥
∫∫

−|xy|fX,Y (x, y) dxdy = −EfX,Y [|XY |]

so

−EfX,Y
[|XY |] ≤ EfX,Y

[XY ] ≤ EfX,Y
[|XY |] ∴ |EfX,Y

[XY ]| ≤ EfX,Y
[|XY |].

For the second inequality, set

a =
|X|

{EfX [|X|p]}1/p
b =

|Y |
{EfY [|Y |q]}1/q

.

Then from the previous lemma

1
p

|X|p
EfX

[|X|p] +
1
q

|Y |q
EfY

[|Y |q] ≥
|XY |

{EfX [|X|p]}1/p {EfY [|Y |q]}1/q

and taking expectations yields, on the left hand side,

1
p

EfX
[|X|p]

EfX
[|X|p] +

1
q

EfY
[|Y |q]

EfY
[|Y |q] =

1
p

+
1
q

= 1

and on the right hand side

EfX,Y [|XY |]
{EfX [|X|p]}1/p {EfY [|Y |q]}1/q

and the result follows.

12 MARKS

(b) The result follows setting p = q = 2 in Hölder’s Inequality with random variables X − µX and
Y − µY in the stated version, after squaring both sides.

5 MARKS
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5. (a) Going directly to the canonical forms

– X ∼ Poisson(λ),

fX(x;λ) =
e−λλx

x!
= h(x)c(λ) exp{w(λ)t(x)}

where

h(x) =
I{0,1,...}(x)

x!
c(λ) = e−λ w(λ) = log λ t(x) = x

so canonical parameter is η = log λ.
5 MARKS

– X ∼ Binomial(n, θ).

fX(x; θ) =
(

n

x

)
θx(1− θ)n−x = h(x)c(θ) exp{w(θ)t(x)}

where

h(x) =
(

n

x

)
I{0,1,...,n}(x) c(θ) = (1− θ)n w(θ) = log

(
θ

1− θ

)
t(x) = x

so canonical parameter is η = log
(

θ
1−θ

)
.

5 MARKS

(b) We have that X = Z/
√

V , where Z ∼ N(0, 1) independent of V . Hence the expectation of
X is zero, and using iterated expectation

EfX [Xk] = EfZ [Zk]EfV [V −k/2]

Using (say) mgfs, EfZ
[Z] = EfZ

[Z3] = 0, with

EfZ
[Z2] = 1 EfZ

[Z4] = 3.

Also

EfV
[V −k/2] =

∫ ∞

0

1
xk/2

(r/2)r/2

Γ(r/2)
xr/2−1e−rx/2 dx

=
(r/2)r/2

Γ(r/2)

∫ ∞

0

x(r−k)/2−1e−rx/2 dx

=
(r/2)r/2

Γ(r/2)
Γ((r − k)/2)
(r/2)(r−k)/2

=
Γ((r − k)/2)

Γ(r/2)
(r/2)k/2

provided r > k. For k = 2

EfV [V −1] =
Γ(r/2− 1)

Γ(r/2)
(r/2) =

r/2
r/2− 1

=
r

r − 2
.

For k = 4

EfV
[V −2] =

Γ(r/2− 2)
Γ(r/2)

(r/2)2 =
(r/2)2

(r/2− 1)(r/2− 2)
=

r2

(r − 2)(r − 4)

and thus the kurtosis is

κ =
EfX

[(X − µ)4]
σ4

=
EfX

[X4]
{EfX

[X2]}2 =
3(r − 2)
(r − 4)

provided r > 4.

15 MARKS
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6. (a) For the cdf of a maximum order statistic

FYn(y) = P [Y ≤ y] = P [max {X1, ..., Xn} ≤ y] =
n∏

i=1

{FX(y)} = {FX(y)}n

5 MARKS

(i) As n →∞, for x ∈ R (
x2

1 + x2

)
< 1 ∴ FXn

(x) → 0

and so the limiting function is not a cdf, and no limiting distribution exists.
3 MARKS

(ii) If Yn = Xn/
√

n. Then Y ≡ (0,∞) and the cdf of Yn is, for y > 0,

FYn
(y) = P [Yn ≤ y] = P

[
Xn/

√
n ≤ y

]
= P

[
Xn ≤

√
ny

]
= FXn

(
√

ny) =

(
(
√

ny)2

1 + (
√

ny)2

)n

and so

FYn
(y) =

(
ny2

1 + ny2

)n

=
(

1− 1
ny2

)n

.

Thus as n →∞, for all y > 0

FYn (v) → exp
{−1/y2

}
∴ FYn (y) → FY (y) = exp

{−1/y2
}

and the limiting distribution of Yn does exist, and is continuous on Y ≡ X.
7 MARKS

(b) (i) The Central Limit Theorem gives that for the iid {Xi} collection

n∑
i=1

Xi − nµ

√
nσ2

d−→ Z ∼ N(0, 1)

Here

µ = EfX [Xi] = a× 1
2

+ (−a)× 1
2

= 0

σ2 = V arfX [Xi] = (a)2 × 1
2

+ (−a)2 × 1
2
− EfX [Xi] = a2

and thus
n∑

i=1

Xi ∼ AN
(
0, na2

)

and
Yn ∼ AN

(
x0, na2

)

where AN denotes Asymptotically Normal (as n →∞).
4 MARKS

(i) This is an elementary application of the Chebychev Inequality to the variable Yn and its
distribution. The (exact) bound to the probability is given in general, for any k > 0, by

P [|Yn − x0| ≥ kσn] ≤ 1
k2

as for any n

E [Yn] = x0 V arfYn
[Yn] = n (a)2 = σ2

n

Here, we need k = 2, and the result follows.
6 MARKS
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