McGill University
 Faculty of Science
 Department of Mathematics and Statistics

December 2006

MATH 556

MATHEMATICAL STATISTICS I

SOLUTIONS

1. (a) From first principles (univariate transformation theorem also acceptable): for $y>0$

$$
F_{Y}(y)=P[Y \leq y]=P\left[\frac{1}{X} \leq y\right]=P\left[X \geq \frac{1}{y}\right]=1-F_{X}\left(y^{-1}\right)
$$

and therefore
$f_{Y}(y)=\frac{1}{y^{2}} f_{X}\left(y^{-1}\right)=\frac{1}{y^{2}} \frac{1}{\Gamma(\alpha)}\left(\frac{1}{y}\right)^{\alpha-1} \exp \left\{-\frac{1}{y}\right\}=\frac{1}{\Gamma(\alpha)}\left(\frac{1}{y}\right)^{\alpha+1} \exp \left\{-\frac{1}{y}\right\} \quad y>0$
and zero otherwise.
6 MARKS
By direct calculation

$$
E_{f_{Y}}[Y]=\int_{0}^{\infty} \frac{1}{x} \frac{1}{\Gamma(\alpha)} x^{\alpha-1} e^{-x} d x=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} x^{(\alpha-1)-1} e^{-x} d x=\frac{\Gamma(\alpha-1)}{\Gamma(\alpha)}=\frac{1}{\alpha-1}
$$

provided $\alpha>1$; if $\alpha \leq 1$, then the expectation does not exist.
3 MARKS
(b) From first principles: range of V is \mathbb{R}^{+}, and thus for $v>0$

$$
F_{V}(v)=P[V \leq v]=P\left[U^{2} \leq v\right]=P[-\sqrt{v} \leq U \leq \sqrt{v}]=F_{U}(\sqrt{v})-F_{U}(-\sqrt{v})
$$

and therefore

$$
f_{V}(v)=\frac{1}{2 \sqrt{v}}\left[f_{U}(\sqrt{v})+f_{U}(-\sqrt{v})\right]
$$

Here $f_{U}(u)=\exp \{-u-\exp \{-u\}\}$, so

$$
f_{V}(v)=\frac{1}{2 \sqrt{v}}[\exp \{-\sqrt{v}-\exp \{-\sqrt{v}\}\}+\exp \{\sqrt{v}-\exp \{\sqrt{v}\}\}] \quad v>0
$$

and zero otherwise.
(c) We have

$$
P[X<Y]=\iint_{A} f_{X, Y}(x, y) d x d y=\iint_{A} f_{X}(x) f_{Y}(y) d x d y
$$

by independence, where

$$
A \equiv\{(x, y): 0<x<y<\infty\}
$$

Hence

$$
P[X<Y]=\int_{0}^{\infty}\left\{\int_{0}^{y} f_{X}(x) d x\right\} f_{Y}(y) d y=\int_{0}^{\infty} F_{X}(y) f_{Y}(y) d y
$$

Changing variables in the integral $y \rightarrow t=F_{Y}(y) \therefore y=F_{Y}^{-1}(t)$, we have

$$
P[X<Y]=\int_{0}^{1} F_{X}\left(F_{Y}^{-1}(t)\right) f_{Y}\left(F_{Y}^{-1}(t)\right) \frac{d y}{d t} d t
$$

and

$$
\frac{d y}{d t}=\left[\frac{d t}{d y}\right]^{-1}=\left[f_{Y}(y)\right]^{-1}=\left[f_{Y}\left(F_{Y}^{-1}(t)\right)\right]^{-1}
$$

and the result follows.
2. (a) Using the multivariate transformation theorem
(a) We have that $\mathbb{X}^{(2)} \equiv \mathbb{R} \times \mathbb{R}$, and

$$
g_{1}\left(t_{1}, t_{2}\right)=\frac{t_{1}}{t_{1}+t_{2}} \quad g_{2}\left(t_{1}, t_{2}\right)=t_{1}+t_{2}
$$

(b) Inverse transformations:

$$
\left.\begin{array}{l}
Y_{1}=\frac{Z_{1}}{Z_{1}+Z_{2}} \\
Y_{2}=Z_{1}+Z_{2}
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{l}
Z_{1}=Y_{1} Y_{2} \\
Z_{2}=\left(1-Y_{1}\right) Y_{2}
\end{array}\right.
$$

and thus

$$
g_{1}^{-1}\left(t_{1}, t_{2}\right)=t_{1} t_{2} \quad g_{2}^{-1}\left(t_{1}, t_{2}\right)=\left(1-t_{1}\right) t_{2}
$$

(c) Range: straightforwardly we have that $0<Y_{1}<1, Y_{2}>0$, so $\mathbb{Y}^{(2)}=(0,1) \times \mathbb{R}^{+}$
(d) The Jacobian for points $\left(y_{1}, y_{2}\right) \in \mathbb{Y}^{(2)}$ is

$$
D_{y_{1}, y_{2}}=\left[\begin{array}{ll}
\frac{\partial z_{1}}{\partial y_{1}} & \frac{\partial z_{1}}{\partial y_{2}} \\
\frac{\partial z_{2}}{\partial y_{1}} & \frac{\partial z_{2}}{\partial y_{2}}
\end{array}\right]=\left[\begin{array}{rc}
y_{2} & y_{1} \\
-y_{2} & 1-y_{1}
\end{array}\right] \Rightarrow\left|J\left(y_{1}, y_{2}\right)\right|=\left|\operatorname{det} D_{y_{1}, y_{2}}\right|=y_{2}
$$

(e) For the joint pdf we have for $\left(y_{1}, y_{2}\right) \in \mathbb{Y}^{(2)}$, by independence of Z_{1} and Z_{2}

$$
\begin{aligned}
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) & =f_{Z_{1}, Z_{2}}\left(y_{1} y_{2},\left(1-y_{1}\right) y_{2}\right) \times y_{2} \\
& =f_{Z_{1}}\left(y_{1} y_{2}\right) \times f_{Z_{2}}\left(\left(1-y_{1}\right) y_{2}\right) \times y_{2} \\
& =\exp \left\{-y_{1} y_{2}\right\} \exp \left\{-\left(1-y_{1}\right) y_{2}\right\} \times y_{2}=y_{2} \exp \left\{-y_{2}\right\}
\end{aligned}
$$

and zero otherwise. Note that Y_{1} and Y_{2} are independent, as their joint pdf factorizes into the respective marginal pdfs, that is, $f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=\{1\} \times\left\{y_{2} \exp \left\{-y_{2}\right\}\right\}-$ not necessary for full marks.
(b) (i) For $0 \leq x \leq n$, using the Beta integral function

$$
\begin{aligned}
f_{X}(x) & =\int_{0}^{1} f_{X \mid Y}(x \mid y) f_{Y}(y) d y=\int_{0}^{1}\binom{n}{x} y^{x}(1-y)^{n-x} d y \\
& =\binom{n}{x} \frac{\Gamma(x+1) \Gamma(n-x+1)}{\Gamma(n+2)}=\frac{1}{n+1}
\end{aligned}
$$

(ii) For $x>0$, using the Gamma integral

$$
\begin{aligned}
f_{X}(x) & =\int_{0}^{\infty} f_{X \mid Y}(x \mid y) f_{Y}(y) d y=\int_{0}^{\infty} y e^{-x y} \beta e^{-\beta y} d y \\
& =\beta \int_{0}^{\infty} y e^{-(x+\beta) y} d y=\beta \frac{\Gamma(2)}{(x+\beta)^{2}}=\frac{\beta}{(x+\beta)^{2}}
\end{aligned}
$$

3. (a) We have $K_{X}(t)=\log M_{X}(t)$, hence
$K_{X}^{(1)}(t)=\frac{d}{d s}\left\{K_{X}(t)\right\}_{s=t}=\frac{d}{d s}\left\{\log M_{X}(t)\right\}_{s=t}=\frac{M_{X}^{(1)}(t)}{M_{X}(t)} \Longrightarrow K_{X}^{(1)}(0)=\frac{M_{X}^{(1)}(0)}{M_{X}(0)}=E_{f_{X}}[X]$
as $M_{X}(0)=1$. Similarly

$$
K_{X}^{(2)}(t)=\frac{M_{X}(t) M_{X}^{(2)}(t)-\left\{M_{X}^{(1)}(t)\right\}^{2}}{\left\{M_{X}(t)\right\}^{2}}
$$

and hence

$$
K_{X}^{(2)}(0)=\frac{M_{X}(0) M_{X}^{(2)}(0)-\left\{M_{X}^{(1)}(0)\right\}^{2}}{\left\{M_{X}(0)\right\}^{2}}=E_{f_{X}}\left[X^{2}\right]-\left\{E_{f_{X}}[X]\right\}^{2}
$$

and hence $K_{X}^{(2)}(0)=\operatorname{Var}_{f_{X}}[X]$
(b) By inspection, $c=\lambda / 2$, and so

$$
C_{X}(t)=E_{f_{X}}\left[e^{i t X}\right]=\int_{-\infty}^{\infty} e^{i t x} f_{X}(x) d x=\frac{1}{2} \int_{-\infty}^{\infty} e^{i t x} \lambda e^{-\lambda|x|} d x
$$

But f_{X} is symmetric about zero, so

$$
C_{X}(t)=\int_{0}^{\infty} \cos (t x) \lambda e^{-\lambda x} d x=\int_{0}^{\infty} \cos (s y) e^{-y} d y
$$

where $s=t / \lambda$. Integrating by parts yields

$$
C_{X}(t)=\frac{1}{1+(t / \lambda)^{2}}=\frac{\lambda^{2}}{\lambda^{2}+t^{2}}
$$

as

$$
\begin{aligned}
C_{X}(t) & =\int_{0}^{\infty} \cos (t y) e^{-y} d y=\left[-\cos (t y) e^{-y}\right]_{0}^{\infty}-\int_{0}^{\infty} t \sin (t y) e^{-y} d y \\
& =1-t\left[\sin (t y) e^{-y}\right]_{0}^{\infty}-t \int_{0}^{\infty} t \cos (t y) e^{-y} d y \\
& =1-t^{2} C_{X}(t)
\end{aligned}
$$

gives

$$
C_{X}(t)=\frac{1}{1+t^{2}}
$$

8 MARKS
(c) The cf for $Z \sim N(0,1)$ can be written

$$
C_{Z}(t)=\exp \left\{-t^{2} / 2\right\}=\left\{\exp \left\{-t^{2} /(2 n)\right\}\right\}^{n}=\left\{C_{X_{n}}(t)\right\}^{n}
$$

for $n=1,2, \ldots$, where $C_{X_{n}}(t)$ is the of of $X_{n} \sim N\left(0, \sigma^{2} / n\right)$. This holds for arbitrary positive integer n, so Z is infinitely divisible.

$$
4 \text { MARKS }
$$

(d) We have

$$
C_{X}(t)=\cos (t)=\frac{1}{2} e^{i t}+\frac{1}{2} e^{-i t}
$$

and hence it follows that X has a discrete distribution with pmf with equal probability on -1 and 1 , that is, is symmetric, and hence the skewness is zero.
4. This question is bookwork:
(a) Fix $b>0$. Let

$$
g(a ; b)=\frac{1}{p} a^{p}+\frac{1}{q} b^{q}-a b .
$$

We require that $g(a ; b) \geq 0$ for all a. Differentiating wrt a for fixed b yields

$$
g^{(1)}(a ; b)=a^{p-1}-b
$$

so that $g(a ; b)$ is minimized (the second derivative is strictly positive at all a) when $a^{p-1}=b$, and at this value of a, the function takes the value

$$
\frac{1}{p} a^{p}+\frac{1}{q}\left(a^{p-1}\right)^{q}-a\left(a^{p-1}\right)=\frac{1}{p} a^{p}+\frac{1}{q} a^{p}-a^{p}=0
$$

as $1 / p+1 / q=1 \Longrightarrow(p-1) q=p$. As the second derivative is strictly positive at all a, the minimum is attained at the unique value of a where $a^{p-1}=b$, where, raising both sides to power q yields $a^{p}=b^{q}$.

For the first inequality,

$$
E_{f_{X, Y}}[|X Y|]=\iint|x y| f_{X, Y}(x, y) d x d y \geq \iint x y f_{X, Y}(x, y) d x d y=E_{f_{X, Y}}[X Y]
$$

and

$$
E_{f_{X, Y}}[X Y]=\iint x y f_{X, Y}(x, y) d x d y \geq \iint-|x y| f_{X, Y}(x, y) d x d y=-E_{f_{X, Y}}[|X Y|]
$$

so

$$
-E_{f_{X, Y}}[|X Y|] \leq E_{f_{X, Y}}[X Y] \leq E_{f_{X, Y}}[|X Y|] \quad \therefore \quad\left|E_{f_{X, Y}}[X Y]\right| \leq E_{f_{X, Y}}[|X Y|] .
$$

For the second inequality, set

$$
a=\frac{|X|}{\left\{E_{f_{X}}\left[|X|^{p}\right]\right\}^{1 / p}} \quad b=\frac{|Y|}{\left\{E_{f_{Y}}\left[|Y|^{q}\right]\right\}^{1 / q}}
$$

Then from the previous lemma

$$
\frac{1}{p} \frac{|X|^{p}}{E_{f_{X}}\left[|X|^{p}\right]}+\frac{1}{q} \frac{|Y|^{q}}{E_{f_{Y}}\left[|Y|^{q}\right]} \geq \frac{|X Y|}{\left\{E_{f_{X}}\left[|X|^{p}\right]\right\}^{1 / p}\left\{E_{f_{Y}}\left[|Y|^{q}\right]\right\}^{1 / q}}
$$

and taking expectations yields, on the left hand side,

$$
\frac{1}{p} \frac{E_{f_{X}}\left[|X|^{p}\right]}{E_{f_{X}}\left[|X|^{p}\right]}+\frac{1}{q} \frac{E_{f_{Y}}\left[|Y|^{q}\right]}{E_{f_{Y}}\left[|Y|^{q}\right]}=\frac{1}{p}+\frac{1}{q}=1
$$

and on the right hand side

$$
\frac{E_{f_{X, Y}}[|X Y|]}{\left\{E_{f_{X}}\left[|X|^{p}\right]\right\}^{1 / p}\left\{E_{f_{Y}}\left[|Y|^{q}\right]\right\}^{1 / q}}
$$

and the result follows.
(b) The result follows setting $p=q=2$ in Hölder's Inequality with random variables $X-\mu_{X}$ and $Y-\mu_{Y}$ in the stated version, after squaring both sides.
5. (a) Going directly to the canonical forms

- $X \sim \operatorname{Poisson}(\lambda)$,

$$
f_{X}(x ; \lambda)=\frac{e^{-\lambda} \lambda^{x}}{x!}=h(x) c(\lambda) \exp \{w(\lambda) t(x)\}
$$

where

$$
h(x)=\frac{I_{\{0,1, \ldots\}}(x)}{x!} \quad c(\lambda)=e^{-\lambda} \quad w(\lambda)=\log \lambda \quad t(x)=x
$$

so canonical parameter is $\eta=\log \lambda$.
5 MARKS
$-X \sim \operatorname{Binomial}(n, \theta)$.

$$
f_{X}(x ; \theta)=\binom{n}{x} \theta^{x}(1-\theta)^{n-x}=h(x) c(\theta) \exp \{w(\theta) t(x)\}
$$

where

$$
h(x)=\binom{n}{x} I_{\{0,1, \ldots, n\}}(x) \quad c(\theta)=(1-\theta)^{n} \quad w(\theta)=\log \left(\frac{\theta}{1-\theta}\right) \quad t(x)=x
$$

so canonical parameter is $\eta=\log \left(\frac{\theta}{1-\theta}\right)$.
(b) We have that $X=Z / \sqrt{V}$, where $Z \sim N(0,1)$ independent of V. Hence the expectation of X is zero, and using iterated expectation

$$
E_{f_{X}}\left[X^{k}\right]=E_{f_{Z}}\left[Z^{k}\right] E_{f_{V}}\left[V^{-k / 2}\right]
$$

Using (say) mgfs, $E_{f_{Z}}[Z]=E_{f_{z}}\left[Z^{3}\right]=0$, with

$$
E_{f_{Z}}\left[Z^{2}\right]=1 \quad E_{f_{Z}}\left[Z^{4}\right]=3
$$

Also

$$
\begin{aligned}
E_{f_{V}}\left[V^{-k / 2}\right] & =\int_{0}^{\infty} \frac{1}{x^{k / 2}} \frac{(r / 2)^{r / 2}}{\Gamma(r / 2)} x^{r / 2-1} e^{-r x / 2} d x \\
& =\frac{(r / 2)^{r / 2}}{\Gamma(r / 2)} \int_{0}^{\infty} x^{(r-k) / 2-1} e^{-r x / 2} d x \\
& =\frac{(r / 2)^{r / 2}}{\Gamma(r / 2)} \frac{\Gamma((r-k) / 2)}{(r / 2)^{(r-k) / 2}}=\frac{\Gamma((r-k) / 2)}{\Gamma(r / 2)}(r / 2)^{k / 2}
\end{aligned}
$$

provided $r>k$. For $k=2$

$$
E_{f_{V}}\left[V^{-1}\right]=\frac{\Gamma(r / 2-1)}{\Gamma(r / 2)}(r / 2)=\frac{r / 2}{r / 2-1}=\frac{r}{r-2} .
$$

For $k=4$

$$
E_{f_{V}}\left[V^{-2}\right]=\frac{\Gamma(r / 2-2)}{\Gamma(r / 2)}(r / 2)^{2}=\frac{(r / 2)^{2}}{(r / 2-1)(r / 2-2)}=\frac{r^{2}}{(r-2)(r-4)}
$$

and thus the kurtosis is

$$
\kappa=\frac{E_{f_{X}}\left[(X-\mu)^{4}\right]}{\sigma^{4}}=\frac{E_{f_{X}}\left[X^{4}\right]}{\left\{E_{f_{X}}\left[X^{2}\right]\right\}^{2}}=\frac{3(r-2)}{(r-4)}
$$

provided $r>4$.
6. (a) For the cdf of a maximum order statistic

$$
F_{Y_{n}}(y)=P[Y \leq y]=P\left[\max \left\{X_{1}, \ldots, X_{n}\right\} \leq y\right]=\prod_{i=1}^{n}\left\{F_{X}(y)\right\}=\left\{F_{X}(y)\right\}^{n}
$$

(i) As $n \rightarrow \infty$, for $x \in \mathbb{R}$

$$
\left(\frac{x^{2}}{1+x^{2}}\right)<1 \quad \therefore \quad F_{X_{n}}(x) \rightarrow 0
$$

and so the limiting function is not a cdf, and no limiting distribution exists.
3 MARKS
(ii) If $Y_{n}=X_{n} / \sqrt{n}$. Then $\mathbb{Y} \equiv(0, \infty)$ and the cdf of Y_{n} is, for $y>0$,
$F_{Y_{n}}(y)=P\left[Y_{n} \leq y\right]=P\left[X_{n} / \sqrt{n} \leq y\right]=P\left[X_{n} \leq \sqrt{n} y\right]=F_{X_{n}}(\sqrt{n} y)=\left(\frac{(\sqrt{n} y)^{2}}{1+(\sqrt{n} y)^{2}}\right)^{n}$
and so

$$
F_{Y_{n}}(y)=\left(\frac{n y^{2}}{1+n y^{2}}\right)^{n}=\left(1-\frac{1}{n y^{2}}\right)^{n}
$$

Thus as $n \rightarrow \infty$, for all $y>0$

$$
F_{Y_{n}}(v) \rightarrow \exp \left\{-1 / y^{2}\right\} \quad \therefore \quad F_{Y_{n}}(y) \rightarrow F_{Y}(y)=\exp \left\{-1 / y^{2}\right\}
$$

and the limiting distribution of Y_{n} does exist, and is continuous on $\mathbb{Y} \equiv \mathbb{X}$.
(b) (i) The Central Limit Theorem gives that for the iid $\left\{X_{i}\right\}$ collection

$$
\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sqrt{n \sigma^{2}}} \xrightarrow{d} Z \sim N(0,1)
$$

Here

$$
\begin{aligned}
\mu & =E_{f_{X}}\left[X_{i}\right]=a \times \frac{1}{2}+(-a) \times \frac{1}{2}=0 \\
\sigma^{2} & =\operatorname{Var}_{f_{X}}\left[X_{i}\right]=(a)^{2} \times \frac{1}{2}+(-a)^{2} \times \frac{1}{2}-E_{f_{X}}\left[X_{i}\right]=a^{2}
\end{aligned}
$$

and thus

$$
\sum_{i=1}^{n} X_{i} \sim A N\left(0, n a^{2}\right)
$$

and

$$
Y_{n} \sim A N\left(x_{0}, n a^{2}\right)
$$

where $A N$ denotes Asymptotically Normal (as $n \rightarrow \infty$).
(i) This is an elementary application of the Chebychev Inequality to the variable Y_{n} and its distribution. The (exact) bound to the probability is given in general, for any $k>0$, by

$$
P\left[\left|Y_{n}-x_{0}\right| \geq k \sigma_{n}\right] \leq \frac{1}{k^{2}}
$$

as for any n

$$
E\left[Y_{n}\right]=x_{0} \quad \operatorname{Var}_{f_{Y_{n}}}\left[Y_{n}\right]=n(a)^{2}=\sigma_{n}^{2}
$$

Here, we need $k=2$, and the result follows.

