
MATH 556: MATHEMATICAL STATISTICS I

ASYMPTOTIC APPROXIMATIONS AND THE DELTA METHOD

To approximate the distribution of elements in sequence of random variables {Xn} for large n, we
attempt to find sequences of constants {an} and {bn} such that

Zn = anXn + bn
d−→ Z

where Z has some distribution characterized by cdf FZ . Then, for large n, FZn(z) ≏ FZ(z), so

FXn(x) = P [Xn ≤ x] = P [anXn + bn ≤ anx+ bn] = FZn(anx+ bn) ≏ FZ(anx+ bn).

Example: Suppose that the rvs X1, X2, . . . , Xn are i.i.d. with Xi ∼ Exponential(1), and let Yn =
max{X1, X2, . . . , Xn}. Then by a previous result, for y > 0,

FYn(y) = {FX(y)}n = {1− e−y}n −→ 0

and there is no limiting distribution. However, if an = 1 and bn = − log n, and set Zn = anYn+ bn, then
as n −→ ∞,

FZn(z) = P[Zn ≤ z] = P[Yn ≤ z + log n] = {1− e−z−logn}n −→ exp{−e−z} = FZ(z),

∴ FYn(y) = P [Yn ≤ y] = P [Zn ≤ y − log n] ≏ FZ(y − log n) = exp{−e−y+logn} = exp{−ne−y}

and by differentiating, for y > 0
fYn(y) ≏ ne−y exp{−ne−y}.

This can be compared with the exact version, for y > 0

fYn(y) = ne−y(1− e−y)n−1.

• Asymptotic Normality: A sequence of rvs {Xn} is asymptotically normally distributed if there
exist sequences of real constants {µn} and {σn} (with σn > 0) such that

Xn − µn

σn

d−→ Z ∼ Normal(0, 1).

The notation Xn .∼. Normal(µn, σ
2
n) or Xn ∼ AN (µn, σ

2
n) as n −→ ∞ is commonly used.

• Asymptotic Approximations for Transformations: Suppose {Xn} are a sequence of rvs, and that
for real sequence {an} with an −→ ∞ as n −→ ∞,

(i) for real constant x0 and random variable V ,

an(Xn − x0)
d−→ V

(ii) real function g is differentiable at x0, with derivative ġ.

Then
an(g(Xn)− g(x0))

d−→ ġ(x0)V
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Proof. Note first that for every ϵ > 0, there exists δ > 0 such that

|x− x0| ≤ δ =⇒ |g(x)− g(x0)− ġ(x0)(x− x0)| ≤ ϵ|x− x0|

Now, from (i) we using stochastic order notation (see Appendix) have

an(Xn − x0) = Op(1) =⇒ Xn − x0 = Op(a
−1
n ) = op(1)

as an −→ ∞. Therefore, by definition, for every δ > 0, P [|Xn−x0| ≤ δ] −→ 1, and therefore from
above, for every ϵ > 0,

P [|g(Xn)− g(x0)− ġ(x0)(Xn − x0)| ≤ ϵ|Xn − x0|] −→ 1.

Hence
an(g(Xn)− g(x0)− ġ(x0)(Xn − x0)) = op(an(Xn − x0)) = op(1)

Therefore
an(g(Xn)− g(x0)) = ġ(x0){an(Xn − x0)}+ op(1)

and hence
an(g(Xn)− g(x0))

d−→ ġ(x0)V.

• The Delta Method: Consider sequence of rvs {Xn} such that

√
n(Xn − µ)

d−→ X.

Suppose that g(.) is a function such that first derivative ġ(.) is continuous in a neighbourhood of
µ, with ġ(µ) ̸= 0. Then

√
n(g(Xn)− g(µ))

d−→ ġ(µ)X.

In particular, if
√
n(Xn − µ)

d−→ X ∼ Normal(0, σ2).

then √
n(g(Xn)− g(µ))

d−→ ġ(µ)X ∼ Normal(0, {ġ(µ)}2σ2).

Using the result above, with an =
√
n, x0 = µ, V = X , we have that

√
n(g(Xn)− g(µ)) = ġ(µ)

√
n(Xn − µ)

d−→ ġ(µ)X

and if X ∼ Normal(0, σ2), it follows from the properties of the Normal distribution that

√
n(g(Xn)− g(µ))

d−→ Normal(0, {ġ(µ)}2σ2).

Note that this method does not give a useful result if ġ(µ) = 0.

• Multivariate Version: Consider a sequence of random vectors {Xn} such that

√
n(Xn − µ)

d−→ X.
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and g : Rd −→ Rk is a vector-valued function with first derivative matrix ġ(.) which is continu-
ous in a neighbourhood of µ, with ġ(µ) ̸= 0. Note that g can be considered as a k × 1 vector of
scalar functions.

g(x) = (g1(x), . . . , gk(x))
⊤.

Note that ġ(x) is a (k × d) matrix with (i, j)th element

∂gi(x)

∂xj

Under these assumptions, in general

√
n(g(Xn)− g(µ))

d−→ ġ(µ)X.

and in particular, if
√
n(Xn − µ)

d−→ X ∼ Normald(0,Σ).

where Σ is a positive definite, symmetric d× d matrix, then

√
n(g(Xn)− g(µ))

d−→ ġ(µ)X ∼ Normalk

(
0, ġ(µ)Σġ(µ)⊤

)
.

• The Second Order Delta Method: Normal case: Consider sequence of rvs {Xn} such that

√
n(Xn − µ)

d−→ Normal(0, σ2).

Suppose that g(.) is a function such that its first derivative ġ(.) is continuous in a neighbourhood
of µ, with ġ(µ) = 0, but its second derivative exists at µ with g̈(µ) ̸= 0. Then

n(g(Xn)− g(µ))
d−→ σ2 g̈(µ)

2
X

where X ∼ χ2
1. This results uses a second order Taylor approximation; we have

g(Xn) = g(µ) + ġ(µ)(Xn − µ) +
g̈(µ)

2
(Xn − µ)2 + op(1)

thus, as ġ(µ) = 0,

g(Xn)− g(µ) =
g̈(µ)

2
(Xn − µ)2 + op(1)

and thus

n(g(Xn)− g(µ)) =
g̈(µ)

2
{
√
n(Xn − µ)}2 d−→ σ2 g̈(µ)

2
Z2

where Z2 ∼ χ2
1.

• EXAMPLES

1. Under the conditions of the Central Limit Theorem, for random variables X1, . . . , Xn and
their sample mean random variable Xn

√
n(Xn − µ)

d−→ X ∼ Normal(0, σ2).
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Consider g(x) = x2, so that ġ(x) = 2x, and hence, if µ ̸= 0,

√
n(Xn

2 − µ2)
d−→ X ∼ Normal(0, 4µ2σ2)

and
Xn

2 ∼ AN (µ2, 4µ2σ2/n)

If µ = 0, we proceed by a different route to compute the approximate distribution of Xn
2;

note that, if µ = 0,
√
nXn

d−→ X ∼ Normal(0, σ2)

so therefore
nXn

2
= (

√
nXn)

2 d−→ X2 ∼ Gamma(1/2, 1/(2σ2))

by elementary transformation results. Hence, for large n,

Xn
2
.∼. Gamma(1/2, n/(2σ2))

2. Again under the conditions of the CLT, consider the distribution of 1/Xn. In this case, we
have a function g(x) = 1/x, so ġ(x) = −1/x2, and if µ ̸= 0, the Delta method gives

√
n(1/Xn − 1/µ)

d−→ X ∼ Normal(0, σ2/µ4)

or,
1

Xn

∼ AN (1/µ, n−1σ2/µ4).

STOCHASTIC ORDER NOTATION

• For random variable Z, we write Z = Op(1) if for all ϵ > 0, there exists M < ∞ such that

P [|Z| ≥ M ] ≤ ϵ.

• For sequence {Zn}, write Zn = Op(1) if for all n, P [|Zn| ≥ M ] ≤ ϵ, and write Zn = Op(Sn) for
sequence of random variables {Sn} if

|Zn|
|Sn|

= Op(1).

Note that this includes the case where Sn is a sequence of reals, rather than random variables.
Finally, write Zn = op(1) if Zn

p−→ 0, and Zn = op(Sn) if

|Zn|
|Sn|

= op(1).

Note that Op(1)op(1) = op(1) and Op(1) + op(1) = Op(1).
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