Stochastic Convergence

The following definitions relate to a sequence $\left\{X_{n}\right\}$ of random variables defined on the same probability space (Ω, \mathcal{F}, P). The statements are given in terms of P for simplicity.

1. Convergence Almost Surely: $\left\{X_{n}\right\}$ converges almost surely to random variable X, denoted $X_{n} \xrightarrow{\text { a.s. }} X$, if for every $\epsilon>0$

$$
P\left[\lim _{n \longrightarrow \infty}\left|X_{n}-X\right|<\epsilon\right]=1,
$$

that is, if $A \equiv\left\{\omega: X_{n}(\omega) \longrightarrow X(\omega)\right\}$, then $P(A)=1$. Equivalently, $X_{n} \xrightarrow{\text { a.s. }} X$ if for every $\epsilon>0$

$$
P\left[\lim _{n \longrightarrow \infty}\left|X_{n}-X\right| \geq \epsilon\right]=0 .
$$

Equivalent terminology is

$$
X_{n} \longrightarrow X \text { almost everywhere, } X_{n} \xrightarrow{\text { a.e. }} X \quad X_{n} \longrightarrow X \text { with probability 1, } X_{n} \xrightarrow{\text { w.p. } 1} X
$$

Interpretation: The sequence of random variables $\left\{X_{n}\right\}$ corresponds to a sequence of functions defined on elements of Ω. Almost sure convergence requires that the sequence of real numbers $X_{n}(\omega)$ converges to $X(\omega)$ (as a real sequence) for all $\omega \in \Omega$, as $n \longrightarrow \infty$, except perhaps when ω is in a set having probability zero under the probability distribution of X. That is, for every $\omega \in \Omega$, except possibly those lying in a set of probability zero under P, we have

$$
\lim _{n \longrightarrow \infty} X_{n}(\omega)=X(\omega) .
$$

Let $\epsilon>0$, and for each $n \geq 1$, consider sets $A_{n}(\epsilon), B_{n}(\epsilon) \in \mathcal{F}$ defined by

$$
A_{n}(\epsilon) \equiv\left\{\omega:\left|X_{n}(\omega)-X(\omega)\right| \geq \epsilon\right\} \quad B_{n}(\epsilon) \equiv \bigcup_{m=n}^{\infty} A_{m}(\epsilon) .
$$

Then we have $X_{n} \xrightarrow{\text { a.s. }} X$ if and only if $\lim _{n \longrightarrow \infty} P\left(B_{n}(\epsilon)\right)=0$. Note that

$$
A_{n}(\epsilon) \subseteq B_{n}(\epsilon) \quad \Longrightarrow \quad P\left(A_{n}(\epsilon)\right) \leq P\left(B_{n}(\epsilon)\right)
$$

so

$$
\lim _{n \longrightarrow \infty} P\left(B_{n}(\epsilon)\right)=0 \quad \Longrightarrow \quad \lim _{n \longrightarrow \infty} P\left(A_{n}(\epsilon)\right)=0 .
$$

Note also that by continuity of probability,

$$
\lim _{n \longrightarrow \infty} P\left(B_{n}(\epsilon)\right)=P\left(\lim _{n \longrightarrow \infty} B_{n}(\epsilon)\right) \equiv P\left(\bigcap_{n=1}^{\infty} B_{n}(\epsilon)\right)=P\left(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}(\epsilon)\right)
$$

where, as $B_{n+1}(\epsilon) \subseteq B_{n}(\epsilon),\left\{B_{n}(\epsilon)\right\}$ is a decreasing sequence of sets, we may define

$$
\lim _{n \longrightarrow \infty} B_{n}(\epsilon)=\bigcap_{n=1}^{\infty} B_{n}(\epsilon) .
$$

- Strong Law Of Large Numbers: Suppose that $\left\{X_{n}\right\}$ is a sequence of random variables each with expectation μ. Let \bar{X}_{n} be the sample mean. Then for all $\epsilon>0$,

$$
P\left[\lim _{n \longrightarrow \infty}\left|\bar{X}_{n}-\mu\right|<\epsilon\right]=1,
$$

that is, $\bar{X}_{n} \xrightarrow{\text { a.s. }} \mu$, and thus the mean of X_{1}, \ldots, X_{n} converges almost surely to μ.
2. Convergence in Probability: The sequence $\left\{X_{n}\right\}$ converges in probability to random variable $X, X_{n} \xrightarrow{p} X$, if, for all $\epsilon>0$,

$$
\lim _{n \longrightarrow \infty} P\left[\left|X_{n}-X\right|<\epsilon\right]=1 \quad \text { or equivalently } \quad \lim _{n \longrightarrow \infty} P\left[\left|X_{n}-X\right| \geq \epsilon\right]=0
$$

Let $\epsilon>0$, and consider $A_{n}(\epsilon)$ defined above. Then we have $X_{n} \xrightarrow{p} X$ if

$$
\lim _{n \longrightarrow \infty} P\left(A_{n}(\epsilon)\right)=0
$$

that is, if there exists an n such that for all $m \geq n, P\left(A_{m}(\epsilon)\right)$ is arbitrarily small.

- As a special case, $\left\{X_{n}\right\}$ converges in probability to a constant c, denoted $X_{n} \xrightarrow{p} c$, if for every $\epsilon>0$,

$$
\lim _{n \longrightarrow \infty} P\left[\left|X_{n}-c\right|<\epsilon\right]=1 \quad \text { or } \quad \lim _{n \longrightarrow \infty} P\left[\left|X_{n}-c\right| \geq \epsilon\right]=0
$$

that is, if the limiting distribution of X_{1}, \ldots, X_{n} is degenerate at c.

- Weak Law Of Large Numbers: Suppose that $\left\{X_{n}\right\}$ is a sequence of i.i.d. random variables with expectation μ. Let \bar{X}_{n} be the sample mean. Then for all $\epsilon>0$,

$$
\lim _{n \longrightarrow \infty} P\left[\left|\bar{X}_{n}-\mu\right|<\epsilon\right]=1,
$$

that is, $\bar{X}_{n} \xrightarrow{p} \mu$, and thus the mean of X_{1}, \ldots, X_{n} converges in probability to μ. The Weak Law can be proved in a straightforward fashion using Chebychev's Inequality if the variables have finite variance σ^{2}; this inequality states that for any random variable X, and $\epsilon>0$,

$$
P_{X}[|X-\mu|<\epsilon] \geq 1-\sigma^{2} / \epsilon^{2} .
$$

Applying this to \bar{X}_{n} yields the result, as the variance converges to zero. However the result can be proved even without the finite variance assumption using characteristic functions.
3. Convergence in Distribution: Suppose $\left\{X_{n}\right\}$ have corresponding sequence of cdfs, $F_{X_{1}}, F_{X_{2}}, \ldots$ so that for $n=1,2, . . F_{X_{n}}(x)=P\left[X_{n} \leq x\right]$. Suppose that there exists a cdf, F_{X}, such that for all x at which F_{X} is continuous,

$$
\lim _{n \longrightarrow \infty} F_{X_{n}}(x)=F_{X}(x) .
$$

Then $\left\{X_{n}\right\}$ converges in distribution to X with cdf F_{X}, denoted $X_{n} \xrightarrow{d} X$, and F_{X} is the limiting distribution.

- Convergence of a sequence of mgfs or cfs also indicates convergence in distribution. For example, if for all t at which $M_{X}(t)$ is defined, as $n \longrightarrow \infty$, we have

$$
M_{X_{i}}(t) \longrightarrow M_{X}(t) \quad \Longleftrightarrow \quad X_{n} \xrightarrow{d} X .
$$

- The sequence of random variables X_{1}, \ldots, X_{n} converges in distribution to constant c if the limiting distribution of X_{1}, \ldots, X_{n} is degenerate at c, that is,

$$
X_{n} \xrightarrow{d} X
$$

and $P[X=c]=1$, so that

$$
F_{X}(x)= \begin{cases}0 & x<c \\ 1 & x \geq c\end{cases}
$$

This special case occurs when the limiting distribution is discrete, with the probability mass function only being non-zero at a single value, that is, if the limiting random variable is X, then $P[X=c]=1$ and zero otherwise. We say that the sequence of random variables X_{1}, \ldots, X_{n} converges in distribution to c if and only if, for all $\epsilon>0$,

$$
\lim _{n \longrightarrow \infty} P\left[\left|X_{n}-c\right|<\epsilon\right]=1
$$

This definition indicates that convergence in distribution to a constant c occurs if and only if the probability becomes increasingly concentrated around c as $n \longrightarrow \infty$.

To show that we should ignore points of discontinuity of F_{X} in the definition of convergence in distribution, consider the following example: let

$$
F_{\epsilon}(x)= \begin{cases}0 & x<\epsilon \\ 1 & x \geq \epsilon\end{cases}
$$

be the cdf of a degenerate distribution with probability mass 1 at $x=\epsilon$. Now consider a sequence $\left\{\epsilon_{n}\right\}$ of real values converging to ϵ from below. Then, as $\epsilon_{n}<\epsilon$, we have

$$
F_{\epsilon_{n}}(x)= \begin{cases}0 & x<\epsilon_{n} \\ 1 & x \geq \epsilon_{n}\end{cases}
$$

which converges to $F_{\epsilon}(x)$ at all real values of x. However, if instead $\left\{\epsilon_{n}\right\}$ converges to ϵ from above, then $F_{\epsilon_{n}}(\epsilon)=0$ for each finite n, as $\epsilon_{n}>\epsilon$, so $\lim _{n \longrightarrow \infty} F_{\epsilon_{n}}(\epsilon)=0$. Hence, as $n \longrightarrow \infty$,

$$
F_{\epsilon_{n}}(\epsilon) \longrightarrow 0 \neq 1=F_{\epsilon}(\epsilon) .
$$

Thus the limiting function in this case is

$$
F_{\epsilon}(x)= \begin{cases}0 & x \leq \epsilon \\ 1 & x>\epsilon\end{cases}
$$

which is not a cdf as it is not right-continuous. However, if $\left\{X_{n}\right\}$ and X are random variables with distributions $\left\{F_{\epsilon_{n}}\right\}$ and F_{ϵ}, then $P\left[X_{n}=\epsilon_{n}\right]=1$ converges to $P[X=\epsilon]=1$, however we take the limit, so F_{ϵ} does describe the limiting distribution of the sequence $\left\{F_{\epsilon_{n}}\right\}$. Thus, because of right-continuity, we ignore points of discontinuity in the limiting function.
4. Convergence In r th Mean The sequence of random variables $\left\{X_{n}\right\}$ converges in rth mean to random variable X, denoted $X_{n} \xrightarrow{r} X$ if

$$
\lim _{n \longrightarrow \infty} \mathbb{E}\left[\left|X_{n}-X\right|^{r}\right]=0 .
$$

For example, if

$$
\lim _{n \longrightarrow \infty} \mathbb{E}\left[\left(X_{n}-X\right)^{2}\right]=0
$$

then we write $X_{n} \xrightarrow{r=2} X$. In this case, we say that $\left\{X_{n}\right\}$ converges to X in mean-square or in quadratic mean. For $r_{1}>r_{2} \geq 1$,

$$
X_{n} \xrightarrow{r=r_{1}} X \quad \Longrightarrow \quad X_{n} \xrightarrow{r=r_{2}} X
$$

as, by Lyapunov's inequality

$$
\mathbb{E}\left[\left|X_{n}-X\right|^{r_{2}}\right]^{1 / r_{2}} \leq \mathbb{E}\left[\left|X_{n}-X\right|^{r_{1}}\right]^{1 / r_{1}} \quad \therefore \quad \mathbb{E}\left[\left|X_{n}-X\right|^{r_{2}}\right] \leq \mathbb{E}\left[\left|X_{n}-X\right|^{r_{1}}\right]^{r_{2} / r_{1}} \longrightarrow 0
$$

as $n \longrightarrow \infty$, as $r_{2}<r_{1}$. Thus

$$
\mathbb{E}\left[\left|X_{n}-X\right|^{r_{2}}\right] \longrightarrow 0
$$

and $X_{n} \xrightarrow{r=r_{2}} X$. The converse does not hold in general.

Notes:

(a) Relating The Modes Of Convergence For sequence of random variables X_{1}, \ldots, X_{n},

$$
\left.\begin{array}{c}
X_{n} \xrightarrow{\text { a.s. }} X \\
\begin{array}{l}
\text { or } \\
X_{n} \xrightarrow{r} X
\end{array}
\end{array}\right\} \quad \Longrightarrow \quad X_{n} \xrightarrow{p} X \quad \Longrightarrow \quad X_{n} \xrightarrow{d} X
$$

so almost sure convergence and convergence in r th mean for some r both imply convergence in probability, which in turn implies convergence in distribution to random variable X.

No other relationships hold in general, although there are some partial converse results.
(b) Slutsky's Theorem: Suppose that $X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{p} c$ for some constant c. Then
(i) $X_{n}+Y_{n} \xrightarrow{d} X+c$
(ii) $X_{n} Y_{n} \xrightarrow{d} c X$
(iii) $X_{n} / Y_{n} \xrightarrow{d} X / c$ provided $c \neq 0$.
(c) The Central Limit Theorem: Suppose X_{1}, \ldots, X_{n} are i.i.d. random variables with cf φ_{X}, with expectation μ and variance σ^{2}, both finite. Let the random variable Z_{n} be defined by

$$
Z_{n}=\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sqrt{n \sigma^{2}}}=\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sigma}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)
$$

and denote by $\varphi_{Z_{n}}$ the cf of Z_{n}. Then, as $n \longrightarrow \infty$,

$$
\varphi_{Z_{n}}(t) \longrightarrow \exp \left\{-t^{2} / 2\right\}
$$

irrespective of the form of φ_{X}. Thus, as $n \longrightarrow \infty, Z_{n} \xrightarrow{d} Z \sim \operatorname{Normal}(0,1)$.
Proof. First, let $Y_{i}=\left(X_{i}-\mu\right) / \sigma$ for $i=1, \ldots, n$. Then Y_{1}, \ldots, Y_{n} are i.i.d. with of φ_{Y} say, and

$$
\mathbb{E}_{Y}\left[Y_{i}\right]=0 \quad \operatorname{Var}_{Y}[Y]=1
$$

for each i. By a previous result for cfs concerning moments, using a Taylor expansion for t in a neighbourhood of zero, we have

$$
\varphi_{Y}(t)=1-\frac{t^{2}}{2}+\mathbf{o}\left(t^{3}\right)
$$

Re-writing Z_{n} as

$$
Z_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} Y_{i}
$$

as Y_{1}, \ldots, Y_{n} are independent, we have by a standard cf result that

$$
\varphi_{Z_{n}}(t)=\prod_{i=1}^{n}\left\{\varphi_{Y}\left(\frac{t}{\sqrt{n}}\right)\right\}=\left\{1-\frac{t^{2}}{2 n}+\mathrm{o}\left(n^{-3 / 2}\right)\right\}^{n}=\left\{1-\frac{t^{2}}{2 n}+\mathrm{o}\left(n^{-1}\right)\right\}^{n} .
$$

so that, by the definition of the exponential function, as $n \longrightarrow \infty$

$$
\varphi_{Z_{n}}(t) \longrightarrow \exp \left\{-t^{2} / 2\right\} \quad \therefore \quad Z_{n} \xrightarrow{d} Z \sim \operatorname{Normal}(0,1)
$$

where no further assumptions on φ_{X} are required.

Alternative statement: The theorem can also be stated in terms of

$$
Z_{n}=\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sqrt{n}}=\sqrt{n}\left(\bar{X}_{n}-\mu\right)
$$

so that

$$
Z_{n} \xrightarrow{d} Z \sim \operatorname{Normal}\left(0, \sigma^{2}\right) .
$$

and σ^{2} is termed the asymptotic variance of Z_{n}.

Notes :

(i) The theorem holds for the i.i.d. case, but there are similar theorems for non identically distributed, and dependent random variables.
(ii) The theorem allows the construction of asymptotic normal approximations. For example, for large but finite n, by using the properties of the Normal distribution,

$$
\begin{aligned}
\bar{X}_{n} & \sim \mathcal{A N}\left(\mu, \sigma^{2} / n\right) \\
S_{n}=\sum_{i=1}^{n} X_{i} & \sim \mathcal{A N}\left(n \mu, n \sigma^{2}\right) .
\end{aligned}
$$

where $\mathcal{A N}\left(\mu, \sigma^{2}\right)$ denotes an asymptotic normal distribution. The notation

$$
\bar{X}_{n} \dot{\sim} \operatorname{Normal}\left(\mu, \sigma^{2} / n\right)
$$

is sometimes used.
(iv) The multivariate version of this theorem can be stated as follows: Suppose $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ are i.i.d. d-dimensional random variables with

$$
\mathbb{E}_{\mathbf{X}}\left[\mathbf{X}_{i}\right]=\boldsymbol{\mu} \quad \operatorname{Var}_{\mathbf{X}}\left[\mathbf{X}_{i}\right]=\Sigma
$$

where Σ is a positive definite, symmetric $d \times d$ matrix defining the variance-covariance matrix of the \mathbf{X}_{i}. Let the random variable \mathbf{Z}_{n} be defined by

$$
\mathbf{Z}_{n}=\sqrt{n}\left(\overline{\mathbf{X}}_{n}-\boldsymbol{\mu}\right)
$$

where

$$
\overline{\mathbf{X}}_{n}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} .
$$

Then

$$
\mathbf{Z}_{n} \xrightarrow{d} \mathbf{Z} \sim \operatorname{Normal}_{d}(\mathbf{0}, \Sigma)
$$

as $n \longrightarrow \infty$.

Appendix: Technical Details

Alternative characterizations of almost sure convergence:

(i) Let $\epsilon>0$, and define the sets $A_{n}(\epsilon)$ and $B_{n}(\epsilon)$ be defined for $n \geq 1$ by

$$
A_{n}(\epsilon) \equiv\left\{\omega:\left|X_{n}(\omega)-X(\omega)\right| \geq \epsilon\right\} \quad B_{n}(\epsilon) \equiv \bigcup_{m=n}^{\infty} A_{m}(\epsilon)
$$

- $A_{n}(\epsilon)$ is the set of ω for which $X_{n}(\omega)$ is at least ϵ away from X.
- $B_{n}(\epsilon)$ is the set of ω for which $X_{m}(\omega)$ at least ϵ away from X, for at least one $m \geq n$.
- The event $B_{n}(\epsilon)$ occurs if there exists an $m \geq n$ such that $\left|X_{m}-X\right| \geq \epsilon$.
- $X_{n} \xrightarrow{\text { a.s. }} X$ if and only if $P\left(B_{n}(\epsilon)\right) \longrightarrow 0$.
(ii) $X_{n} \xrightarrow{\text { a.s. }} X$ if and only if

$$
P\left[\left|X_{n}-X\right| \geq \epsilon \text { infinitely often }\right]=0
$$

that is, $X_{n} \xrightarrow{\text { a.s. }} X$ if and only if there are only finitely many X_{n} for which $\left|X_{n}(\omega)-X(\omega)\right| \geq \epsilon$ if ω lies in a set of probability greater than zero.
Note that $X_{n} \xrightarrow{\text { a.s. }} X$ if and only if

$$
\lim _{n \longrightarrow \infty} P\left(B_{n}(\epsilon)\right)=\lim _{n \longrightarrow \infty} P\left(\bigcup_{m=n}^{\infty} A_{m}(\epsilon)\right)=0
$$

in contrast with the definition of convergence in probability, where $X_{n} \xrightarrow{p} X$ if

$$
\lim _{n \longrightarrow \infty} P\left(A_{n}(\epsilon)\right)=0
$$

Clearly $A_{n}(\epsilon) \subseteq \bigcup_{m=n}^{\infty} A_{m}(\epsilon)$ so therefore

$$
\lim _{n \longrightarrow \infty} P\left(\bigcup_{m=n}^{\infty} A_{m}(\epsilon)\right)=0 \quad \Longrightarrow \quad \lim _{n \longrightarrow \infty} P\left(A_{n}(\epsilon)\right)=0
$$

and hence almost sure convergence implies convergence in probability.

Proof. Relating the modes of convergence.

(a) $X_{n} \xrightarrow{\text { a.s. }} X \Longrightarrow X_{n} \xrightarrow{p} X$. Suppose $X_{n} \xrightarrow{\text { a.s. }} X$, and let $\epsilon>0$. Then

$$
\begin{equation*}
P\left[\left|X_{n}-X\right|<\epsilon\right] \geq P\left[\left|X_{m}-X\right|<\epsilon, \forall m \geq n\right] \tag{1}
\end{equation*}
$$

as, considering the original sample space,

$$
\left\{\omega:\left|X_{m}(\omega)-X(\omega)\right|<\epsilon, \forall m \geq n\right\} \subseteq\left\{\omega:\left|X_{n}(\omega)-X(\omega)\right|<\epsilon\right\}
$$

But, as $X_{n} \xrightarrow{\text { a.s. }} X, P\left[\left|X_{m}-X\right|<\epsilon, \forall m \geq n\right] \longrightarrow 1$, as $n \longrightarrow \infty$. So, after taking limits in equation (1), we have

$$
\lim _{n \longrightarrow \infty} P\left[\left|X_{n}-X\right|<\epsilon\right] \geq \lim _{n \longrightarrow \infty} P\left[\left|X_{m}-X\right|<\epsilon, \forall m \geq n\right]=1
$$

and so

$$
\lim _{n \longrightarrow} P\left[\left|X_{n}-X\right|<\epsilon\right]=1 \quad \therefore \quad X_{n} \xrightarrow{p} X .
$$

(b) $X_{n} \xrightarrow{r} X \Longrightarrow X_{n} \xrightarrow{p} X$. Suppose $X_{n} \xrightarrow{r} X$, and let $\epsilon>0$. Then, using an argument similar to Chebychev's Lemma,

$$
\mathbb{E}\left[\left|X_{n}-X\right|^{r}\right] \geq \mathbb{E}\left[\left|X_{n}-X\right|^{r} \mathbb{1}\left\{\left|X_{n}-X\right|>\epsilon\right\}\right] \geq \epsilon^{r} P\left[\left|X_{n}-X\right|>\epsilon\right] .
$$

Taking limits as $n \longrightarrow \infty$, as $X_{n} \xrightarrow{r} X, \mathbb{E}\left[\left|X_{n}-X\right|^{r}\right] \longrightarrow 0$ as $n \longrightarrow \infty$, so therefore

$$
P\left[\left|X_{n}-X\right|>\epsilon\right] \longrightarrow 0 \quad \therefore \quad X_{n} \xrightarrow{p} X .
$$

(c) $X_{n} \xrightarrow{p} X \Longrightarrow X_{n} \xrightarrow{d} X$. Suppose $X_{n} \xrightarrow{p} X$, and let $\epsilon>0$. Denote, in the usual way,

$$
F_{X_{n}}(x)=P\left[X_{n} \leq x\right] \quad \text { and } \quad F_{X}(x)=P[X \leq x] .
$$

Then, by the theorem of total probability, we have two inequalities

$$
\begin{aligned}
& F_{X_{n}}(x)=P\left[X_{n} \leq x\right]=P\left[X_{n} \leq x, X \leq x+\epsilon\right]+P\left[X_{n} \leq x, X>x+\epsilon\right] \leq F_{X}(x+\epsilon)+P\left[\left|X_{n}-X\right|>\epsilon\right] \\
& F_{X}(x-\epsilon)=P[X \leq x-\epsilon]=P\left[X \leq x-\epsilon, X_{n} \leq x\right]+P\left[X \leq x-\epsilon, X_{n}>x\right] \leq F_{X_{n}}(x)+P\left[\left|X_{n}-X\right|>\epsilon\right] . \\
& \text { as } A \subseteq B \Longrightarrow P(A) \leq P(B) \text { yields }
\end{aligned}
$$

$$
P\left[X_{n} \leq x, X \leq x+\epsilon\right] \leq F_{X}(x+\epsilon) \quad \text { and } \quad P\left[X \leq x-\epsilon, X_{n} \leq x\right] \leq F_{X_{n}}(x)
$$

Thus

$$
F_{X}(x-\epsilon)-P\left[\left|X_{n}-X\right|>\epsilon\right] \leq F_{X_{n}}(x) \leq F_{X}(x+\epsilon)+P\left[\left|X_{n}-X\right|>\epsilon\right]
$$

and taking limits as $n \longrightarrow \infty$ (with care; we cannot yet write $\lim _{n \longrightarrow \infty} F_{X_{n}}(x)$ as we do not know that this limit exists) recalling that $X_{n} \xrightarrow{p} X$,

$$
F_{X}(x-\epsilon) \leq \liminf _{n \longrightarrow \infty} F_{X_{n}}(x) \leq \limsup _{n \longrightarrow \infty} F_{X_{n}}(x) \leq F_{X}(x+\epsilon)
$$

Then if F_{X} is continuous at $x, F_{X}(x-\epsilon) \longrightarrow F_{X}(x)$ and $F_{X}(x+\epsilon) \longrightarrow F_{X}(x)$ as $\epsilon \longrightarrow 0$, so

$$
F_{X}(x) \leq \liminf _{n \longrightarrow \infty} F_{X_{n}}(x) \leq \limsup _{n \longrightarrow \infty} F_{X_{n}}(x) \leq F_{X}(x)
$$

and thus $F_{X_{n}}(x) \longrightarrow F_{X}(x)$ as $n \longrightarrow \infty$.
Thus all results follow.

Slutsky's Theorem: Suppose that $X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{p} c$ for some constant c. Then
(a) $X_{n}+Y_{n} \xrightarrow{d} X+c$
(b) $X_{n} Y_{n} \xrightarrow{d} c X$
(c) $X_{n} / Y_{n} \xrightarrow{d} X / c$ provided $c \neq 0$.

Proof. For (a), let $x-c$ be a continuity point of F_{X}, some x, and choose $\epsilon>0$ such that $x-c-\epsilon$ and $x-c+\epsilon$ are also continuity points. Let $Z_{n}=X_{n}+Y_{n}$. Then, as in the previous proof, by the theorem of total probability, we have the inequalities

$$
\begin{aligned}
F_{Z_{n}}(x)=P\left[X_{n}+Y_{n} \leq x\right] & =P\left[X_{n}+Y_{n} \leq x,\left|Y_{n}-c\right|<\epsilon\right]+P\left[X_{n}+Y_{n} \leq x,\left|Y_{n}-c\right| \geq \epsilon\right] \\
& \leq F_{X_{n}}(x-c+\epsilon)+P\left[\left|Y_{n}-c\right| \geq \epsilon\right]
\end{aligned}
$$

and similarly

$$
\begin{aligned}
F_{X_{n}}(x-c-\epsilon)=P\left[X_{n} \leq x-c-\epsilon\right]= & P\left[X_{n} \leq x-c-\epsilon,\left|Y_{n}-c\right|<\epsilon\right] \\
& +P\left[X_{n} \leq x-c-\epsilon,\left|Y_{n}-c\right| \geq \epsilon\right] \\
\leq & F_{Z_{n}}(x)+P\left[\left|Y_{n}-c\right| \geq \epsilon\right]
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \limsup _{n \longrightarrow \infty} F_{Z_{n}}(x) \leq \limsup _{n \longrightarrow \infty} F_{X_{n}}(x-c+\epsilon)+\limsup _{n \longrightarrow \infty} P\left[\left|Y_{n}-c\right| \geq \epsilon\right]=F_{X}(x-c+\epsilon) \\
& \liminf _{n \longrightarrow \infty} F_{Z_{n}}(x) \geq \liminf _{n \longrightarrow \infty} F_{X_{n}}(x-c-\epsilon)+\liminf _{n \longrightarrow \infty} P\left[\left|Y_{n}-c\right| \geq \epsilon\right]=F_{X}(x-c-\epsilon)
\end{aligned}
$$

as $x-c-\epsilon$ and $x-c+\epsilon$ are continuity points of F_{X}. This holds for arbitrary $\epsilon>0$, and thus

$$
\lim _{n \longrightarrow \infty} F_{Z_{n}}(x)=F_{X}(x-c)=P[X \leq x-c]=P[X+c \leq x]=P[Z \leq x]=F_{Z}(x)
$$

Thus

$$
\lim _{n \longrightarrow \infty} F_{Z_{n}}(x)=F_{Z}(x) \quad \therefore \quad Z \xrightarrow{d} X+c
$$

Results (b) and (c) follow in a similar fashion.

Partial Converses

(a) If

$$
\sum_{n=1}^{\infty} P\left[\left|X_{n}-X\right|>\epsilon\right]<\infty
$$

for every $\epsilon>0$, then $X_{n} \xrightarrow{\text { a.s. }} X$.
(b) If, for some positive integer r,

$$
\sum_{n=1}^{\infty} \mathbb{E}\left[\left|X_{n}-X\right|^{r}\right]<\infty
$$

then $X_{n} \xrightarrow{\text { a.s. }} X$.
Proof. The results follow from direct probability arguments.
(a) Let $\epsilon>0$. Then for $n \geq 1$,

$$
P\left[\left|X_{n}-X\right|>\epsilon \text {, for some } m \geq n\right] \equiv P\left[\bigcup_{m=n}^{\infty}\left\{\left|X_{m}-X\right|>\epsilon\right\}\right] \leq \sum_{m=n}^{\infty} P\left[\left|X_{m}-X\right|>\epsilon\right]
$$

as, by elementary probability theory, $P(A \cup B) \leq P(A)+P(B)$. But, as it is the tail sum of a convergent series (by assumption), it follows that

$$
\lim _{n \longrightarrow \infty} \sum_{m=n}^{\infty} P\left[\left|X_{m}-X\right|>\epsilon\right]=0 .
$$

Hence

$$
\lim _{n \longrightarrow \infty} P\left[\left|X_{n}-X\right|>\epsilon, \text { for some } m \geq n\right]=0
$$

and $X_{n} \xrightarrow{\text { a.s. }} X$.
(b) Identical to part (a), and using part (b) of the previous theorem on relating the modes of convergence that $X_{n} \xrightarrow{r} X \Longrightarrow X_{n} \xrightarrow{p} X$.

Thus the partial converse results hold.

