
MATH 556: MATHEMATICAL STATISTICS I

STOCHASTIC CONVERGENCE

The following definitions relate to a sequence {Xn} of random variables defined on the same proba-
bility space (Ω,F , P ). The statements are given in terms of P for simplicity.

1. Convergence Almost Surely: {Xn} converges almost surely to random variable X , denoted
Xn

a.s.−→ X , if for every ϵ > 0

P
[

lim
n−→∞

|Xn −X| < ϵ
]
= 1,

that is, if A ≡ {ω : Xn(ω) −→ X(ω)}, then P (A) = 1. Equivalently, Xn
a.s.−→ X if for every ϵ > 0

P
[

lim
n−→∞

|Xn −X| ≥ ϵ
]
= 0.

Equivalent terminology is

Xn −→ X almost everywhere, Xn
a.e.−→ X Xn −→ X with probability 1, Xn

w.p.1−→ X

Interpretation: The sequence of random variables {Xn} corresponds to a sequence of functions
defined on elements of Ω. Almost sure convergence requires that the sequence of real numbers
Xn(ω) converges to X(ω) (as a real sequence) for all ω ∈ Ω, as n −→ ∞, except perhaps when
ω is in a set having probability zero under the probability distribution of X . That is, for every
ω ∈ Ω, except possibly those lying in a set of probability zero under P , we have

lim
n−→∞

Xn(ω) = X(ω).

Let ϵ > 0, and for each n ≥ 1, consider sets An(ϵ), Bn(ϵ) ∈ F defined by

An(ϵ) ≡ {ω : |Xn(ω)−X(ω)| ≥ ϵ} Bn(ϵ) ≡
∞⋃

m=n

Am(ϵ).

Then we have Xn
a.s.−→ X if and only if lim

n−→∞
P (Bn(ϵ)) = 0. Note that

An(ϵ) ⊆ Bn(ϵ) =⇒ P (An(ϵ)) ≤ P (Bn(ϵ))

so
lim

n−→∞
P (Bn(ϵ)) = 0 =⇒ lim

n−→∞
P (An(ϵ)) = 0.

Note also that by continuity of probability,

lim
n−→∞

P (Bn(ϵ)) = P
(

lim
n−→∞

Bn(ϵ)
)
≡ P

( ∞⋂
n=1

Bn(ϵ)

)
= P

( ∞⋂
n=1

∞⋃
m=n

Am(ϵ)

)
where, as Bn+1(ϵ) ⊆ Bn(ϵ), {Bn(ϵ)} is a decreasing sequence of sets, we may define

lim
n−→∞

Bn(ϵ) =
∞⋂
n=1

Bn(ϵ).

• Strong Law Of Large Numbers: Suppose that {Xn} is a sequence of random variables each
with expectation µ. Let Xn be the sample mean. Then for all ϵ > 0,

P
[

lim
n−→∞

∣∣Xn − µ
∣∣ < ϵ

]
= 1,

that is, Xn
a.s.−→ µ, and thus the mean of X1, . . . , Xn converges almost surely to µ.
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2. Convergence in Probability: The sequence {Xn} converges in probability to random variable
X , Xn

p−→ X , if, for all ϵ > 0,

lim
n−→∞

P [|Xn −X| < ϵ] = 1 or equivalently lim
n−→∞

P [|Xn −X| ≥ ϵ] = 0

Let ϵ > 0, and consider An(ϵ) defined above. Then we have Xn
p−→ X if

lim
n−→∞

P (An(ϵ)) = 0

that is, if there exists an n such that for all m ≥ n, P (Am(ϵ)) is arbitrarily small.

• As a special case, {Xn} converges in probability to a constant c, denoted Xn
p−→ c, if for

every ϵ > 0,

lim
n−→∞

P [|Xn − c| < ϵ] = 1 or lim
n−→∞

P [|Xn − c| ≥ ϵ] = 0

that is, if the limiting distribution of X1, . . . , Xn is degenerate at c.

• Weak Law Of Large Numbers: Suppose that {Xn} is a sequence of i.i.d. random variables
with expectation µ. Let Xn be the sample mean. Then for all ϵ > 0,

lim
n−→∞

P
[∣∣Xn − µ

∣∣ < ϵ
]
= 1,

that is, Xn
p−→ µ, and thus the mean of X1, . . . , Xn converges in probability to µ. The

Weak Law can be proved in a straightforward fashion using Chebychev’s Inequality if the
variables have finite variance σ2; this inequality states that for any random variable X , and
ϵ > 0,

PX [|X − µ| < ϵ] ≥ 1− σ2/ϵ2.

Applying this to Xn yields the result, as the variance converges to zero. However the result
can be proved even without the finite variance assumption using characteristic functions.

3. Convergence in Distribution: Suppose {Xn} have corresponding sequence of cdfs, FX1 , FX2 , . . .
so that for n = 1, 2, .. FXn(x) = P [Xn ≤ x] . Suppose that there exists a cdf, FX , such that for all
x at which FX is continuous,

lim
n−→∞

FXn(x) = FX(x).

Then {Xn} converges in distribution to X with cdf FX , denoted Xn
d−→ X , and FX is the

limiting distribution.

• Convergence of a sequence of mgfs or cfs also indicates convergence in distribution. For
example, if for all t at which MX(t) is defined, as n −→ ∞, we have

MXi(t) −→ MX(t) ⇐⇒ Xn
d−→ X.

• The sequence of random variables X1, . . . , Xn converges in distribution to constant c if the
limiting distribution of X1, . . . , Xn is degenerate at c, that is,

Xn
d−→ X

and P [X = c] = 1, so that

FX(x) =

{
0 x < c

1 x ≥ c
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This special case occurs when the limiting distribution is discrete, with the probability mass
function only being non-zero at a single value, that is, if the limiting random variable is
X , then P [X = c] = 1 and zero otherwise. We say that the sequence of random variables
X1, . . . , Xn converges in distribution to c if and only if, for all ϵ > 0,

lim
n−→∞

P [|Xn − c| < ϵ] = 1

This definition indicates that convergence in distribution to a constant c occurs if and only
if the probability becomes increasingly concentrated around c as n −→ ∞.

To show that we should ignore points of discontinuity of FX in the definition of convergence
in distribution, consider the following example: let

Fϵ(x) =

{
0 x < ϵ

1 x ≥ ϵ

be the cdf of a degenerate distribution with probability mass 1 at x = ϵ. Now consider a
sequence {ϵn} of real values converging to ϵ from below. Then, as ϵn < ϵ, we have

Fϵn(x) =

{
0 x < ϵn

1 x ≥ ϵn

which converges to Fϵ(x) at all real values of x. However, if instead {ϵn} converges to ϵ from
above, then Fϵn(ϵ) = 0 for each finite n, as ϵn > ϵ, so lim

n−→∞
Fϵn(ϵ) = 0. Hence, as n −→ ∞,

Fϵn(ϵ) −→ 0 ̸= 1 = Fϵ(ϵ).

Thus the limiting function in this case is

Fϵ(x) =

{
0 x ≤ ϵ

1 x > ϵ

which is not a cdf as it is not right-continuous. However, if {Xn} and X are random vari-
ables with distributions {Fϵn} and Fϵ, then P [Xn = ϵn] = 1 converges to P [X = ϵ] = 1,
however we take the limit, so Fϵ does describe the limiting distribution of the sequence
{Fϵn}. Thus, because of right-continuity, we ignore points of discontinuity in the limiting
function.

4. Convergence In rth Mean The sequence of random variables {Xn} converges in rth mean to
random variable X , denoted Xn

r−→ X if

lim
n−→∞

E [|Xn −X|r] = 0.

For example, if
lim

n−→∞
E
[
(Xn −X)2

]
= 0

then we write Xn
r=2−→ X . In this case, we say that {Xn} converges to X in mean-square or in

quadratic mean. For r1 > r2 ≥ 1,

Xn
r=r1−→ X =⇒ Xn

r=r2−→ X

as, by Lyapunov’s inequality

E[ |Xn −X|r2 ]1/r2 ≤ E[ |Xn −X|r1 ]1/r1 ∴ E[ |Xn −X|r2 ] ≤ E[ |Xn −X|r1 ]r2/r1 −→ 0

as n −→ ∞, as r2 < r1. Thus
E[ |Xn −X|r2 ] −→ 0

and Xn
r=r2−→ X . The converse does not hold in general.
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Notes:

(a) Relating The Modes Of Convergence For sequence of random variables X1, . . . , Xn,

Xn
a.s.−→ X

or

Xn
r−→ X

 =⇒ Xn
p−→ X =⇒ Xn

d−→ X

so almost sure convergence and convergence in rth mean for some r both imply convergence in
probability, which in turn implies convergence in distribution to random variable X .

No other relationships hold in general, although there are some partial converse results.

(b) Slutsky’s Theorem: Suppose that Xn
d−→ X and Yn

p−→ c for some constant c. Then

(i) Xn + Yn
d−→ X + c

(ii) XnYn
d−→ cX

(iii) Xn/Yn
d−→ X/c provided c ̸= 0.

(c) The Central Limit Theorem: Suppose X1, . . . , Xn are i.i.d. random variables with cf φX , with
expectation µ and variance σ2, both finite. Let the random variable Zn be defined by

Zn =

n∑
i=1

Xi − nµ

√
nσ2

=

√
n(Xn − µ)

σ
=

1√
n

n∑
i=1

(
Xi − µ

σ

)
and denote by φZn

the cf of Zn. Then, as n −→ ∞,

φZn
(t) −→ exp{−t2/2}

irrespective of the form of φX . Thus, as n −→ ∞, Zn
d−→ Z ∼ Normal(0, 1).

Proof. First, let Yi = (Xi − µ)/σ for i = 1, . . . , n. Then Y1, . . . , Yn are i.i.d. with cf φY say, and

EY [Yi] = 0 VarY [Y ] = 1

for each i. By a previous result for cfs concerning moments, using a Taylor expansion for t in a
neighbourhood of zero, we have

φY (t) = 1− t2

2
+ o(t3)

Re-writing Zn as

Zn =
1√
n

n∑
i=1

Yi

as Y1, . . . , Yn are independent, we have by a standard cf result that

φZn
(t) =

n∏
i=1

{
φY

(
t√
n

)}
=

{
1− t2

2n
+ o(n−3/2)

}n

=

{
1− t2

2n
+ o(n−1)

}n

.

so that, by the definition of the exponential function, as n −→ ∞

φZn
(t) −→ exp{−t2/2} ∴ Zn

d−→ Z ∼ Normal(0, 1)

where no further assumptions on φX are required.
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Alternative statement: The theorem can also be stated in terms of

Zn =

n∑
i=1

Xi − nµ

√
n

=
√
n(Xn − µ)

so that
Zn

d−→ Z ∼ Normal(0, σ2).

and σ2 is termed the asymptotic variance of Zn.

Notes :

(i) The theorem holds for the i.i.d. case, but there are similar theorems for non identically
distributed, and dependent random variables.

(ii) The theorem allows the construction of asymptotic normal approximations. For example,
for large but finite n, by using the properties of the Normal distribution,

Xn ∼ AN (µ, σ2/n)

Sn =
n∑

i=1

Xi ∼ AN (nµ, nσ2).

where AN (µ, σ2) denotes an asymptotic normal distribution. The notation

Xn .∼. Normal(µ, σ2/n)

is sometimes used.
(iv) The multivariate version of this theorem can be stated as follows: Suppose X1, . . . ,Xn are

i.i.d. d-dimensional random variables with

EX[Xi] = µ VarX[Xi] = Σ

where Σ is a positive definite, symmetric d × d matrix defining the variance-covariance
matrix of the Xi. Let the random variable Zn be defined by

Zn =
√
n(Xn − µ)

where

Xn =
1

n

n∑
i=1

Xi.

Then
Zn

d−→ Z ∼ Normald(0,Σ)

as n −→ ∞.
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Appendix: Technical Details

Alternative characterizations of almost sure convergence:

(i) Let ϵ > 0, and define the sets An(ϵ) and Bn(ϵ) be defined for n ≥ 1 by

An(ϵ) ≡ {ω : |Xn(ω)−X(ω)| ≥ ϵ} Bn(ϵ) ≡
∞⋃

m=n

Am(ϵ).

• An(ϵ) is the set of ω for which Xn(ω) is at least ϵ away from X .

• Bn(ϵ) is the set of ω for which Xm(ω) at least ϵ away from X , for at least one m ≥ n.

• The event Bn(ϵ) occurs if there exists an m ≥ n such that |Xm −X| ≥ ϵ.

• Xn
a.s.−→ X if and only if P (Bn(ϵ)) −→ 0.

(ii) Xn
a.s.−→ X if and only if

P [ |Xn −X| ≥ ϵ infinitely often ] = 0

that is, Xn
a.s.−→ X if and only if there are only finitely many Xn for which |Xn(ω)−X(ω)| ≥ ϵ if

ω lies in a set of probability greater than zero.

Note that Xn
a.s.−→ X if and only if

lim
n−→∞

P (Bn(ϵ)) = lim
n−→∞

P

( ∞⋃
m=n

Am(ϵ)

)
= 0

in contrast with the definition of convergence in probability, where Xn
p−→ X if

lim
n−→∞

P (An(ϵ)) = 0.

Clearly An(ϵ) ⊆
∞⋃

m=n
Am(ϵ) so therefore

lim
n−→∞

P

( ∞⋃
m=n

Am(ϵ)

)
= 0 =⇒ lim

n−→∞
P (An(ϵ)) = 0

and hence almost sure convergence implies convergence in probability.

Proof. Relating the modes of convergence.

(a) Xn
a.s.−→ X =⇒ Xn

p−→ X . Suppose Xn
a.s.−→ X , and let ϵ > 0. Then

P [ |Xn −X| < ϵ ] ≥ P [ |Xm −X| < ϵ, ∀m ≥ n ] (1)

as, considering the original sample space,

{ω : |Xm(ω)−X(ω)| < ϵ, ∀m ≥ n} ⊆ {ω : |Xn(ω)−X(ω)| < ϵ}

But, as Xn
a.s.−→ X , P [ |Xm − X| < ϵ, ∀m ≥ n ] −→ 1, as n −→ ∞. So, after taking limits in

equation (1), we have

lim
n−→∞

P [ |Xn −X| < ϵ ] ≥ lim
n−→∞

P [ |Xm −X| < ϵ, ∀m ≥ n ] = 1

and so
lim

n−→∞
P [ |Xn −X| < ϵ ] = 1 ∴ Xn

p−→ X.
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(b) Xn
r−→ X =⇒ Xn

p−→ X . Suppose Xn
r−→ X , and let ϵ > 0. Then, using an argument similar to

Chebychev’s Lemma,

E[ |Xn −X|r ] ≥ E[ |Xn −X|r1{|Xn −X| > ϵ} ] ≥ ϵrP [|Xn −X| > ϵ].

Taking limits as n −→ ∞, as Xn
r−→ X , E[ |Xn −X|r ] −→ 0 as n −→ ∞, so therefore

P [|Xn −X| > ϵ] −→ 0 ∴ Xn
p−→ X.

(c) Xn
p−→ X =⇒ Xn

d−→ X . Suppose Xn
p−→ X , and let ϵ > 0. Denote, in the usual way,

FXn(x) = P [Xn ≤ x] and FX(x) = P [X ≤ x].

Then, by the theorem of total probability, we have two inequalities

FXn(x) = P [Xn ≤ x] = P [Xn ≤ x,X ≤ x+ϵ]+P [Xn ≤ x,X > x+ϵ] ≤ FX(x+ϵ)+P [|Xn−X| > ϵ]

FX(x−ϵ) = P [X ≤ x−ϵ] = P [X ≤ x−ϵ,Xn ≤ x]+P [X ≤ x−ϵ,Xn > x] ≤ FXn(x)+P [|Xn−X| > ϵ].

as A ⊆ B =⇒ P (A) ≤ P (B) yields

P [Xn ≤ x,X ≤ x+ ϵ ] ≤ FX(x+ ϵ) and P [X ≤ x− ϵ,Xn ≤ x ] ≤ FXn(x).

Thus
FX(x− ϵ)− P [ |Xn −X| > ϵ] ≤ FXn(x) ≤ FX(x+ ϵ) + P [ |Xn −X| > ϵ]

and taking limits as n −→ ∞ (with care; we cannot yet write limn−→∞ FXn(x) as we do not know
that this limit exists) recalling that Xn

p−→ X ,

FX(x− ϵ) ≤ lim inf
n−→∞

FXn(x) ≤ lim sup
n−→∞

FXn(x) ≤ FX(x+ ϵ)

Then if FX is continuous at x, FX(x− ϵ) −→ FX(x) and FX(x+ ϵ) −→ FX(x) as ϵ −→ 0, so

FX(x) ≤ lim inf
n−→∞

FXn(x) ≤ lim sup
n−→∞

FXn(x) ≤ FX(x)

and thus FXn(x) −→ FX(x) as n −→ ∞.

Thus all results follow.

Slutsky’s Theorem: Suppose that Xn
d−→ X and Yn

p−→ c for some constant c. Then

(a) Xn + Yn
d−→ X + c

(b) XnYn
d−→ cX

(c) Xn/Yn
d−→ X/c provided c ̸= 0.

Proof. For (a), let x − c be a continuity point of FX , some x, and choose ϵ > 0 such that x − c − ϵ and
x− c+ ϵ are also continuity points. Let Zn = Xn + Yn. Then, as in the previous proof, by the theorem
of total probability, we have the inequalities

FZn(x) = P [Xn + Yn ≤ x] = P [Xn + Yn ≤ x, |Yn − c| < ϵ ] + P [Xn + Yn ≤ x, |Yn − c| ≥ ϵ ]

≤ FXn(x− c+ ϵ) + P [ |Yn − c| ≥ ϵ]
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and similarly

FXn(x− c− ϵ) = P [Xn ≤ x− c− ϵ] =P [Xn ≤ x− c− ϵ, |Yn − c| < ϵ ]

+ P [Xn ≤ x− c− ϵ, |Yn − c| ≥ ϵ ]

≤ FZn(x) + P [ |Yn − c| ≥ ϵ]

Thus

lim sup
n−→∞

FZn(x) ≤ lim sup
n−→∞

FXn(x− c+ ϵ) + lim sup
n−→∞

P [ |Yn − c| ≥ ϵ] = FX(x− c+ ϵ)

lim inf
n−→∞

FZn(x) ≥ lim inf
n−→∞

FXn(x− c− ϵ) + lim inf
n−→∞

P [ |Yn − c| ≥ ϵ] = FX(x− c− ϵ)

as x− c− ϵ and x− c+ ϵ are continuity points of FX . This holds for arbitrary ϵ > 0, and thus

lim
n−→∞

FZn(x) = FX(x− c) = P [X ≤ x− c] = P [X + c ≤ x] = P [Z ≤ x] = FZ(x)

Thus
lim

n−→∞
FZn(x) = FZ(x) ∴ Z

d−→ X + c

Results (b) and (c) follow in a similar fashion.

Partial Converses

(a) If
∞∑
n=1

P [ |Xn −X| > ϵ ] < ∞

for every ϵ > 0, then Xn
a.s.−→ X .

(b) If, for some positive integer r,
∞∑
n=1

E[ |Xn −X|r ] < ∞

then Xn
a.s.−→ X .

Proof. The results follow from direct probability arguments.

(a) Let ϵ > 0. Then for n ≥ 1,

P [ |Xn −X| > ϵ, for some m ≥ n ] ≡ P

[ ∞⋃
m=n

{|Xm −X| > ϵ}

]
≤

∞∑
m=n

P [ |Xm −X| > ϵ ]

as, by elementary probability theory, P (A ∪ B) ≤ P (A) + P (B). But, as it is the tail sum of a
convergent series (by assumption), it follows that

lim
n−→∞

∞∑
m=n

P [ |Xm −X| > ϵ ] = 0.

Hence
lim

n−→∞
P [ |Xn −X| > ϵ, for some m ≥ n ] = 0

and Xn
a.s.−→ X .

(b) Identical to part (a), and using part (b) of the previous theorem on relating the modes of conver-
gence that Xn

r−→ X =⇒ Xn
p−→ X .

Thus the partial converse results hold.
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