Math 556: Mathematical Statistics I
 Order Statistics, Sample Quantiles and Ranks

For n independent random variables X_{1}, \ldots, X_{n}, the order statistics $X_{(1)}, \ldots, X_{(n)}$ are defined by

$$
X_{(i)}-\text { "the } i \text { th smallest value in } X_{1}, \ldots, X_{n} \text { for } i=1, \ldots, n \text { " }
$$

It is sometimes notationally more convenient to write Y_{i} instead of $X_{(i)}$. For distribution with $\operatorname{cdf} F_{X}$,
(a) $Y_{1} \equiv X_{(1)}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ has cdf

$$
\begin{aligned}
F_{Y_{1}}(y)=P_{Y_{1}}\left[Y_{1} \leq y\right] & =1-P_{Y_{1}}\left[Y_{1}>y\right] \\
& =1-P_{X_{1}, \ldots, X_{n}}\left[\min \left\{X_{1}, \ldots, X_{n}\right\}>y\right] \\
& =1-P_{X_{1}, \ldots, X_{n}}\left[\bigcap_{i=1}^{n}\left(X_{i}>y\right)\right] \\
& =1-\prod_{i=1}^{n} P_{X_{i}}\left[X_{i}>y\right] \\
& =1-\prod_{i=1}^{n}\left\{1-F_{X}(y)\right\}=1-\left\{1-F_{X}(y)\right\}^{n}
\end{aligned}
$$

(b) $Y_{n} \equiv X_{(n)}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ has cdf

$$
\begin{aligned}
F_{Y_{n}}(y)=P_{Y_{n}}\left[Y_{n} \leq y\right] & =P_{X_{1}, \ldots, X_{n}}\left[\max \left\{X_{1}, \ldots, X_{n}\right\} \leq y\right] \\
& =P_{X_{1}, \ldots, X_{n}}\left[\bigcap_{i=1}^{n}\left(X_{i} \leq y\right)\right] \\
& =\prod_{i=1}^{n} P_{X_{i}}\left[X_{i} \leq y\right] \\
& =\prod_{i=1}^{n}\left\{F_{X}(y)\right\}=\left\{F_{X}(y)\right\}^{n}
\end{aligned}
$$

If the probability that two X s are identical is zero (that is, ties are avoided), the joint pdf of order statistics Y_{1}, \ldots, Y_{n} is

$$
f_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n}\right)=n!f_{X}\left(y_{1}\right) \ldots f_{X}\left(y_{n}\right) \quad y_{1}<\ldots<y_{n}
$$

as there are n ! configurations of the x s that yield identical order statistics. From first principles, using the joint cdf and the Theorem of Total Probability, and independence of X_{1}, \ldots, X_{n},

$$
\begin{aligned}
F_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n}\right) & =\sum_{\rho} P_{X_{1}, \ldots, X_{n}}\left[X_{\rho(1)} \leq y_{1}, \ldots, X_{\rho(n)} \leq y_{n}\right] \\
& =\sum_{\rho}\left\{\prod_{i=1}^{n} F_{X_{\rho(i)}}\left(y_{i}\right)\right\}=n!F_{X_{1}}\left(y_{1}\right) \cdots F_{X_{n}}\left(y_{n}\right)
\end{aligned}
$$

where the sum is over all the n ! permutations ρ of $\{1, \ldots, n\}$ that account for the different configurations of the original sample that can give rise to identical collections of order statistics. The result follows on differentiating with respect to y_{1}, \ldots, y_{n}.

For the marginal distribution of $Y_{j}=X_{(j)}, j=1, \ldots, n$, note that

$$
F_{Y_{j}}(y)=P_{Y_{j}}\left[Y_{j} \leq y\right] \equiv P_{Z}[Z \geq j]
$$

where Z is the number (out of n) of X s that do not exceed y; this is true as the event " $Y_{j} \leq y$ " means that there are at least j of the X s that do not exceed y. We have that $Z \sim \operatorname{Binomial}\left(n, F_{X}(y)\right)$, so

$$
P_{Z}[Z \geq j]=\sum_{k=j}^{n}\binom{n}{k}\left\{F_{X}(y)\right\}^{k}\left\{1-F_{X}(y)\right\}^{n-k}
$$

(a) In the discrete case, suppose that $\mathbb{X} \equiv\left\{c_{1}, c_{2}, \ldots\right\}$, where $c_{1}<c_{2}<\cdots$, and suppose that

$$
f_{X}\left(c_{i}\right)=p_{i} \quad P_{i}=\sum_{k=1}^{i} p_{k}
$$

$i=1,2, \ldots$. Then the marginal cdf of $Y_{j}=X_{(j)}$ is defined by

$$
F_{Y_{j}}\left(c_{i}\right)=\sum_{k=j}^{n}\binom{n}{k} P_{i}^{k}\left(1-P_{i}\right)^{n-k} \quad c_{i} \in \mathbb{K}
$$

with the usual cdf behaviour elsewhere. The marginal pmf of $Y_{j}=X_{(j)}$ is

$$
f_{Y_{j}}\left(c_{i}\right)=\sum_{k=j}^{n}\binom{n}{k}\left[P_{i}^{k}\left(1-P_{i}\right)^{n-k}-P_{i-1}^{k}\left(1-P_{i-1}\right)^{n-k}\right] \quad c_{i} \in \mathbb{K}
$$

and zero otherwise.
(b) In the continuous case, the marginal cdf of $Y_{j}=X_{(j)}$ is

$$
F_{Y_{j}}(y)=\sum_{k=j}^{n}\binom{n}{k}\left\{F_{X}(y)\right\}^{k}\left\{1-F_{X}(y)\right\}^{n-k}
$$

and hence by differentiation, the marginal pdf is

$$
f_{Y_{j}}(y)=\frac{n!}{(j-1)!(n-j)!}\left\{F_{X}(y)\right\}^{j-1}\left\{1-F_{X}(y)\right\}^{n-j} f_{X}(y) .
$$

To see this heuristically, if the j th order statistic is at y, then we have
(i) a single observation at y, which contributes $f_{X}(y)$;
(ii) $j-1$ observations which have values less than y, which contributes $\left\{F_{X}(y)\right\}^{j-1}$;
(iii) $n-j$ observations which have values greater than y, which contributes $\left\{1-F_{X}(y)\right\}^{n-j}$;

Thus the required mass/density is proportional to

$$
\left\{F_{X}(y)\right\}^{j-1} f_{X}(y)\left\{1-F_{X}(y)\right\}^{n-j} .
$$

The combinatorial term is the number of ways of labelling the original y values to obtain this configuration of order statistics: this is

$$
n \times\binom{ n-1}{j-1}=\frac{n!}{(j-1)!(n-j)!}
$$

we choose the single X in step (i) in n ways, and then the $j-1 X$ s in step (ii) in $\binom{n-1}{j-1}$ ways.

Sample Quantiles: Let $0 \leq p \leq 1$. The p th quantile of distribution $F, x_{F}(p)$, is defined by

$$
x_{F}(p)=\inf \{x: F(x) \geq p\}
$$

where inf is the infimum, or greatest lower bound, that is, $x_{F}(p)$ is the smallest x value such that $F(x) \geq p$. The median is $x_{F}(0.5)$. The p th sample quantile is defined in terms of the order statistics, but there are many possible variants. In general, the p th sample quantile derived from a sample of size n can be defined

$$
\widetilde{X}_{n}(p)=(1-\gamma(n)) X_{(k)}+\gamma(n) X_{(k+1)}
$$

for some $\gamma(n)$ where $0 \leq \gamma(n) \leq 1$ is some function of n to be specified, and k is the integer such that $k / n \leq p<(k+1) / n$. One simple definition uses the k th order statistic, $\widetilde{X}_{n}(p)=X_{(k)}$, where $k=[n p]$ is the nearest integer to $n p$. The sample median is most commonly defined by

$$
\tilde{X}= \begin{cases}X_{((n+1) / 2)} & n \text { odd } \\ \left(X_{(n / 2)}+X_{(n / 2+1)}\right) / 2 & n \text { even }\end{cases}
$$

Ranks: In the continuous case, for X_{1}, \ldots, X_{n}, the rank of X_{i}, R_{i} is defined by

$$
R_{i}=\sum_{j=1}^{n} \mathbb{1}_{\left(-\infty, X_{i}\right]}\left(X_{j}\right)
$$

that is, the number of observations that are no greater than X_{i}. Thus $R_{i}=r \Longleftrightarrow X_{(r)}=X_{i}$. If ties are possible, different rank measures may be used.

